01.11.2013 Views

of the Max - MDC

of the Max - MDC

of the Max - MDC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Structure <strong>of</strong> <strong>the</strong> Group<br />

Group Leader<br />

Dr. Salim Abdelilah-Seyfried<br />

Scientists<br />

Dr. Nana Bit-Avragim*<br />

Dr. Nicole Hellwig*<br />

Graduate Students<br />

Elena Cibrian-Uhalte<br />

David Hava<br />

Cecile Otten<br />

Sabine Seipold*<br />

Stefan Rohr<br />

Technical Assistants<br />

Jana Richter<br />

Nicole Cornitius<br />

* part <strong>of</strong> <strong>the</strong> period reported<br />

Figure 1. Cell shape changes contribute to heart tube elongation.<br />

(A-C) Schematic diagram <strong>of</strong> atrial (A, green) versus ventricular (V,<br />

red) myocardial tissue expansion during heart tube elongation.<br />

(D) Dorsal view onto <strong>the</strong> atrial heart field <strong>of</strong> a 32 hour old embryo.<br />

Membrane red fluorescent protein expressed within myocardial cells<br />

reveals shapes <strong>of</strong> atrial ro<strong>of</strong> cells whereas green fluorescent protein<br />

marks nuclei and part <strong>of</strong> <strong>the</strong> cytoskeleton. (E) Section along <strong>the</strong><br />

anterior-posterior axis <strong>of</strong> <strong>the</strong> developing heart tube marked by<br />

expression <strong>of</strong> green fluorescent protein within myocardial cells. Red<br />

line within inset diagram represents <strong>the</strong> level and orientation <strong>of</strong> <strong>the</strong><br />

section plane. (D, E) Atrial expansion is mainly driven by cuboidal<br />

to squamous epi<strong>the</strong>lial shape changes (white arrows) ra<strong>the</strong>r than by<br />

cell proliferation.<br />

Figure 2. Heart tube elongation requires <strong>the</strong> Na pump function.<br />

(A) Expression <strong>of</strong> <strong>the</strong> myocardial marker cmlc2 in a wild type<br />

embryo marks <strong>the</strong> elongated heart tube. (B) had mutant embryos<br />

lacking <strong>the</strong> Na pump show impaired heart tube elongation. (C)<br />

Heart tube elongation defects in had mutant embryos that were<br />

injected with a mutant mRNA that encodes a Na pump lacking an<br />

important regulatory residue (Serine 25).<br />

<strong>the</strong> osmotic balance produced by <strong>the</strong> Na pump contributes<br />

to <strong>the</strong> maintenance <strong>of</strong> apical junction belts, a function that<br />

is uncovered upon loss <strong>of</strong> Nok.<br />

Future directions<br />

Research in our laboratory is currently directed towards<br />

identifying and characterizing <strong>the</strong> direct downstream phosphorylation<br />

targets <strong>of</strong> Heart and Soul/aPKCi in <strong>the</strong> context<br />

<strong>of</strong> cell polarity and organ morphogenesis. Fur<strong>the</strong>rmore, we<br />

are interested in <strong>the</strong> morphogenetic events that drive cardiogenesis.<br />

We would like to describe <strong>the</strong> repertoire <strong>of</strong> cellular<br />

behaviors that underlie cardiac tube elongation and<br />

myocardial differentiation. Currently, we are generating <strong>the</strong><br />

tools necessary to visualize in vivo <strong>the</strong> development <strong>of</strong> <strong>the</strong><br />

zebrafish myocardial and endocardial tissues. In our analysis,<br />

we will initially focus on those genes that are involved<br />

in directed migratory behavior, control <strong>of</strong> planar or apicalbasal<br />

cell polarity, tissue adhesion and cellular remodeling.<br />

The identification <strong>of</strong> <strong>the</strong> molecular pathways involved in<br />

vertebrate epi<strong>the</strong>lial morphogenesis may lead to relevant<br />

animal models for human epi<strong>the</strong>lial pathologies and to <strong>the</strong><br />

development <strong>of</strong> novel <strong>the</strong>rapeutic approaches.<br />

Selected Publications<br />

Rohr, S, Otten, C, Abdelilah-Seyfried, S. (2007). Asymmetric<br />

involution from <strong>the</strong> right side <strong>of</strong> <strong>the</strong> myocardial field and directional<br />

cohort migration generates <strong>the</strong> heart tube in zebrafish,<br />

Circ. Res. (in press).<br />

Bit-Avragim, N, Rohr, S, Rudolph, F, van der Ven, P, Fürst, D,<br />

Eichhorst, J, Wiesner, B and Abdelilah-Seyfried, S. (2007).<br />

Nuclear localization <strong>of</strong> <strong>the</strong> zebrafish tight junction protein nagie<br />

oko. Dev. Dyn. (in press).<br />

Cibrian-Uhalte, E, Langenbacher, A, Shu, X, Chen, JN,<br />

Abdelilah-Seyfried, S. (2007). Involvement <strong>of</strong> Na,K ATPase in<br />

myocardial cell junction maintenance. J. Cell Biol. 176,<br />

223-230.<br />

Anzenberger, U, Bit-Avragim, N, Rohr, S, Dehmel, B, Willnow, T,<br />

Abdelilah-Seyfried, S. (2006). Elucidation <strong>of</strong> Megalin/LRP2-<br />

dependent endocytic transport processes in <strong>the</strong> larval zebrafish<br />

pronephros. J. Cell Sci. 119, 2127-2137.<br />

Rohr, S, Bit-Avragim, N, Abdelilah-Seyfried, S. (2006). Heart<br />

and soul/PRKCi and Nagie oko/Mpp5 regulate myocardial<br />

coherence and remodeling during cardiac morphogenesis.<br />

Development 133, 107-115.<br />

42 Cardiovascular and Metabolic Disease Research

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!