24.11.2013 Views

Stefan Wirtz Vom Fachbereich VI (Geographie/Geowissenschaften ...

Stefan Wirtz Vom Fachbereich VI (Geographie/Geowissenschaften ...

Stefan Wirtz Vom Fachbereich VI (Geographie/Geowissenschaften ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Experimentelle Rinnenerosionsforschung vs. Modellkonzepte – Quantifizierung der hydraulischen und erosiven Wirksamkeit von Rinnen<br />

variability in sediment concentration, transport and detachment rates. But the spatial and<br />

temporal distribution of the different processes is apparently highly random.<br />

Table 5 Equations for calculating shear stress.<br />

Eq.<br />

Equation<br />

10<br />

τ = γ<br />

y<br />

b<br />

y<br />

(<br />

y<br />

a<br />

s b 2<br />

eff<br />

p<br />

i<br />

C<br />

it<br />

)<br />

τ = shear stress [Pa], γ = weight density of water (force/volume) [Pa], y = flow depth assuming<br />

laminar flow [m], b = time weighting factor in finite difference equation for continuity, s = sine<br />

of slope angle, y b /y p = the ratio of the flow depth on a smooth surface to that in the ponds from<br />

depressions and “dams” [m m -1 ], a = a coefficient to be estimated i eff = effective rainfall<br />

intensity [m s -1 ]<br />

C<br />

it<br />

y<br />

p<br />

= exp [ 0.21 ( 1)]<br />

y<br />

Foster (1982)<br />

11 = a (ρ ρ) g D<br />

12<br />

τ<br />

s<br />

b<br />

1.18<br />

ρ S = specific weight of the sediment [kg m -3 ], ρ = specific weight of the water [kg m -3 ] D = the<br />

particle size [m], a = an empirical factor between 0.039 and 0.09<br />

Shields (1936), Miller et al. (1977), Parker et al. (1982), Diplas (1987), Parker (1990), Komar<br />

(1987 a,b), Andrews (1983), Ashworth and Ferguson (1989 a,b), Komar and Carling (1991)<br />

τ = (σ<br />

g)<br />

2<br />

3<br />

( 3<br />

υ)<br />

1<br />

3<br />

*sin<br />

2<br />

3<br />

α<br />

q<br />

1<br />

3<br />

σ = fluid density [kg m -3 ], g = gravitation [9.81 m s -2 ], υ = kinematic viscosity [m 2 s -1 ]<br />

α = slope angle, q = runoff discharge rate per unit of width [kg m -1 s -1 ]<br />

Chisci et al. (1985)<br />

13 = σ g R* tan(γ)<br />

τ r<br />

τ r = runoff shear stress [Pa], σ = fluid density [kg m -3 ], g = acceleration of gravity [9.81 m s -2 ], R<br />

=hydraulic radius [m], γ = slope angle [°]<br />

Torri et al. (1987)<br />

γ<br />

τ =<br />

h<br />

L<br />

14 L<br />

R<br />

15<br />

γ = unit density of water [kg m -3 ], h L = head loss due to friction [m 2 s -2 ], R = hydraulic radius<br />

[m], L = channel length [m]<br />

Ghebreiyessus et al. (1994)<br />

τ<br />

s<br />

= ρ<br />

w<br />

g S R<br />

f<br />

f<br />

s<br />

tot<br />

ρ w = water density [kg m -3 ], g = gravitation factor [9.81 m s -2 ], S = slope, R = hydraulic radius<br />

[m], f s and f tot = Darcy-Weisbach friction factors for the bare soil and composite surface,<br />

161

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!