22.03.2015 Views

1 Spatial Modelling of the Terrestrial Environment - Georeferencial

1 Spatial Modelling of the Terrestrial Environment - Georeferencial

1 Spatial Modelling of the Terrestrial Environment - Georeferencial

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Flood Inundation <strong>Modelling</strong> Using LiDAR and SAR Data 105<br />

Gomes Pereira, L.M.G. and Wicherson, R.J., 1999, Suitability <strong>of</strong> laser data for deriving geographical<br />

information: a case study in <strong>the</strong> context <strong>of</strong> management <strong>of</strong> fluvial zones, ISPRS Journal <strong>of</strong><br />

Photogrammetry and Remote Sensing, 54, 104–114.<br />

Hey, R.D., 1979, Flow resistance in gravel-bed rivers, Journal <strong>of</strong> <strong>the</strong> Hydraulics Division, ASCE,<br />

105, 365–379.<br />

Horritt, M.S., 1998, Enhanced flood flow modelling using remote sensing techniques. PhD <strong>the</strong>sis,<br />

University <strong>of</strong> Reading, UK.<br />

Horritt, M.S., 1999, A statistical active contour model for SAR image segmentation, Image and Vision<br />

Computing, 17, 213–224.<br />

Horritt, M.S., 2000a, Calibration <strong>of</strong> a two-dimensional finite element flood flow model using satellite<br />

radar imagery, Water Resources Research, 36, 3279–3291.<br />

Horritt, M.S., 2000b, Development <strong>of</strong> physically based meshes for two dimensional models <strong>of</strong> meandering<br />

channel flow, International Journal <strong>of</strong> Numerical Methods in Engineering, 47, 2019–<br />

2037.<br />

Horritt, M.S. and Bates, P.D., 2001a, Predicting floodplain inundation: raster-based modelling versus<br />

<strong>the</strong> finite element approach, Hydrological Processes, 15, 825–842.<br />

Horritt, M.S. and Bates, P.D., 2001b, Effects <strong>of</strong> spatial resolution on a raster-based model <strong>of</strong> flood<br />

flow, Journal <strong>of</strong> Hydrology, 253, 239–249.<br />

Horritt, M.S. and Bates, P.D. 2002, Evaluation <strong>of</strong> 1-D and 2-D numerical models for predicting river<br />

flood inundation, Journal <strong>of</strong> Hydrology, 268, 87–99.<br />

Horritt, M.S., Mason, D.C. and Luckman, A.J., 2001, Flood boundary delineation from syn<strong>the</strong>tic<br />

aperture radar imagery using a statistical active contour model, International Journal <strong>of</strong> Remote<br />

Sensing, 22, 2489–2507.<br />

Hwang, P.A., Krabill, W.B., Wright, W., Swift, R.N. and Walsh, E.J., 2000, Airborne scanning lidar<br />

measurement <strong>of</strong> ocean waves, Remote Sensing <strong>of</strong> <strong>Environment</strong>, 73, 236–246.<br />

King, I.P. and Roig, L.C., 1988, Two-dimensional finite element models for floodplains and tidal flats,<br />

in K. Niki and M. Kawahara (eds), Proceedings <strong>of</strong> an International Conference on Computational<br />

Methods in Flow Analysis, Okayama, Japan, 711–718.<br />

Konikow, L.F. and Bredehoeft, J.D., 1992, Ground-water models cannot be validated, Advances in<br />

Water Resources, 15, 75–83.<br />

Kouwen, N., 1988, Field estimation <strong>of</strong> <strong>the</strong> biomechanical properties <strong>of</strong> grass, Journal <strong>of</strong> Hydraulic<br />

Research, 26, 559–568.<br />

Kouwen, N., 2000, Closure <strong>of</strong> ‘effect <strong>of</strong> riparian vegetation on flow resistance and flood potential’,<br />

Journal <strong>of</strong> Hydraulic Engineering, ASCE, 126(12), 954.<br />

Kouwen, N. and Fathi-Maghadam, M., 2000, Friction factors for coniferous trees along river, Journal<br />

<strong>of</strong> Hydraulic Engineering, ASCE, 126, 732–740.<br />

Kouwen, N. and Li, R.M., 1980, Biomechanics <strong>of</strong> vegetative channel linings, Journal <strong>of</strong> <strong>the</strong> Hydraulics<br />

Division, ASCE, 106, 713–728.<br />

Magnussen, S. and Boudewyn, P., 1998, Derivations <strong>of</strong> stand heights from airborne laser scanner<br />

data with canopy-based quantile estimators, Canadian Journal <strong>of</strong> Forest Research, 28, 1016–<br />

1031.<br />

Marks, K. and Bates, P.D., 2000, Integration <strong>of</strong> high resolution topographic data with floodplain flow<br />

models, Hydrological Processes, 14, 2109–2122.<br />

Marks, K.J., 2001, Enhanced flood hydraulic modelling using topographic remote sensing, PhD<br />

<strong>the</strong>sis, University <strong>of</strong> Bristol.<br />

Mason, D.C., Cobby, D.M. and Davenport, I.J., 1999, Image processing <strong>of</strong> airborne scanning laser<br />

altimetry for some environmental applications, Proc. EOS/SPIE Symposium on Image Processing<br />

for Remote Sensing V, Florence, 20–24 Sept, vol. 3871, 55–62.<br />

Mason, D.C., Cobby, D.M., Horritt, M.S. and Bates, P.D. 2003, Floodplain friction parameterisation<br />

in two-dimensional river flood models using vegetation heights derived from airborne scanning<br />

laser altimetry, Hydrological Processes, 17, 1979–2000.<br />

Naesset, E., 1997, Determination <strong>of</strong> mean tree height <strong>of</strong> forest stands using airborne laser scanner<br />

data, ISPRS Journal <strong>of</strong> Photogrammetry and Remote Sensing, 52, 49–56.<br />

Ormsby, J.P., Blanchard, B.J. and Blanchard, A.J., 1985, Detection <strong>of</strong> lowland flooding using active<br />

microwave systems, International Journal <strong>of</strong> Remote Sensing, 5, 317–328.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!