22.03.2015 Views

1 Spatial Modelling of the Terrestrial Environment - Georeferencial

1 Spatial Modelling of the Terrestrial Environment - Georeferencial

1 Spatial Modelling of the Terrestrial Environment - Georeferencial

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Index 271<br />

ICESat<br />

estimation <strong>of</strong> topographic variables 265<br />

study <strong>of</strong> cryosphere a primary objective 14, 31–2<br />

IFOV (instantaneous field <strong>of</strong> view) 43, 44<br />

image banding<br />

causes <strong>of</strong> 129–33<br />

simulation <strong>of</strong> random error 129, 130, 131<br />

main problem, how to deal with 131–3<br />

adding additional tie points, main effects 131–2,<br />

131<br />

method based on using ground control points<br />

132–3, 133<br />

refinement <strong>of</strong> stitching process 132, 132<br />

in systematic surface error 126–7<br />

interferometric Syn<strong>the</strong>tic Aperture Radar (InSAR)<br />

18–19<br />

topography from 22–3, 24<br />

inundation extent 82–5<br />

remote sensing systems 82–5, 83<br />

air photo datasets 82<br />

airborne optical platforms 82<br />

satellite optical platforms 82<br />

Syn<strong>the</strong>tic Aperture Radar (SAR) 83–5<br />

hydraulic models 82<br />

validation 96<br />

Jornada del Muerto Basin, New Mexico<br />

wind erosion 138–9, 139<br />

Chihuahuan Desert 140–1, 140<br />

mesquite dunelands 143, 152<br />

wind erosion and dust flux 152, 153<br />

SWEMO 145, 146–53<br />

model, operation 148–53<br />

soil data 145, 146, 146<br />

vegetation data 146–7, 147, 147<br />

wind data 147–8, 148<br />

Kalman filter 70<br />

ensemble Kalman filter 255–6<br />

extended Kalman filter 255, 256, 258–9<br />

kernel-based reclassification techniques 203<br />

L-band radar, use in canopy penetration 84<br />

L-band (satellite) missions, potential 60, 66<br />

land cover, and land use 202<br />

land data assimilation systems (LDAS) 59–60, 69–70,<br />

247–9, 247<br />

multiple land surface models under one system<br />

248–9, 249, 252<br />

applications 256–9<br />

precipitation forcing data 256–8, 258<br />

SMMR-derived surface soil moisture data<br />

258–9<br />

atmospheric forcing fields 256, 257<br />

components <strong>of</strong> 249–56, 252<br />

data assimilation 254–6<br />

land surface simulations 249–51<br />

observations and observation-based data<br />

251–4<br />

uncoupled vs.coupled modelling systems 251<br />

future directions 259<br />

global LDAS (GLDAS) 248–9, 251–2<br />

land information system 249<br />

North American LDAS (NLDAS) 248, 251<br />

use <strong>of</strong> existing Land Surface Models 248<br />

primary goal 248<br />

land form change, application <strong>of</strong> remote sensing to<br />

110<br />

land information system (LIS) 249, 251<br />

land surface models 12<br />

assimilation <strong>of</strong> soil moisture remote sensing data<br />

into 255<br />

coupled with microwave emission models 60–3<br />

to be used in LDAS 248, 249, 250–1<br />

catchment-based LSM 250, 259<br />

Community Land Model (CLM) 251<br />

Mosaic LSM 250<br />

NOAH LSM 250–1<br />

use <strong>of</strong> probability density function (PDF) with 71<br />

land surface state data 253–4<br />

snow variables 254<br />

soil moisture remote sensing 253<br />

surface temperature remote sensing 253<br />

land use, and atmospheric mineral dust 139<br />

land use and transport modelling framework 231–3<br />

demand elements 232<br />

important features for monitoring environmental<br />

impact <strong>of</strong> traffic emissions 233<br />

land use system 231–2<br />

transport model, based on trade pattern between<br />

zones 232–3<br />

modal split procedure 233<br />

Landsat Thematic Mapper (TM) 82, 203, 229<br />

large catchments, problems <strong>of</strong> modelling erosion and<br />

deposition in 158<br />

LDAS see land data assimilation systems (LDAS)<br />

LiDAR<br />

high spatial-density airborne LiDAR 201<br />

topographical mapping 86<br />

r.m.s. errors 92<br />

LiDAR data, variogram analysis <strong>of</strong> 92–3<br />

LiDAR and SAR data<br />

coupled to a numerical flood model 5<br />

used in flood inundation modelling 12,<br />

79–106<br />

LiDAR segmentation system 88, 89, 90–1, 90, 96<br />

advantage <strong>of</strong> segmentation 91<br />

LISFLOOD-FP inundation model 93, 96, 97<br />

application <strong>of</strong> 98–100, 99<br />

model uncertainty 100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!