13.07.2015 Views

11:10-12:00, Rm 103

11:10-12:00, Rm 103

11:10-12:00, Rm 103

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nobel Laureate LectureThe molecular basis of eukaryotic transcriptionRoger D. KornbergDepartment of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USATranscription is the process in a cell in which the genetic information stored in DNA isactivated by the synthesis of complementary mRNA by enzymes called RNApolymerases. Eventually, the mRNA is translated by ribosomes into functional cellproteins. Transcription is one of the most central processes of life, and is controlled by asophisticated and complex regulatory system. The current needs for proteins of differentkinds in the cell, determine when the regulatory system triggers the activation of specificgenes. Previous x-ray crystal structures have given insight into the mechanism oftranscription and the role of general transcription factors in the initiation of the process. Astructure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termedthe “B finger”, reaching into the active center of the polymerase where it may interact withboth DNA and RNA, but this structure showed little of the carboxyl-terminal region. A newcrystal structure of the same complex at 3.8 angstrom resolution obtained under differentsolution conditions is complementary with the previous one, revealing the carboxylterminalregion of TFIIB, located above the polymerase active center cleft, but showingnone of the B finger. In the new structure, the linker between the amino- and carboxylterminalregions can also be seen, snaking down from above the cleft toward the activecenter. The two structures, taken together with others previously obtained, dispel longstandingmysteries of the transcription initiation process.Nobel Laureate LectureProteolytic enzymes: mechanisms, structures and applicationRobert HuberMax-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, GermanyUniversität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, D-45<strong>11</strong>7 Essen, GermanyCardiff University, School of Biosciences, Cardiff CF<strong>10</strong> 3US, UKWithin cells or subcellular compartments misfolded and/or short-lived regulatory proteinsare degraded by protease machines, cage-forming multi-subunit assemblages. Theirproteolytic active sites are sequestered within the particles and located on the inner walls.Access of protein substrates is regulated by protein subcomplexes or protein domainswhich may assist in substrate unfolding dependent or independent of ATP. Five proteasemachines will be described displaying different subunit structures, oligomeric states,enzymatic mechanisms, and regulatory properties.ProteasomeGroll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D. and Huber, R. (1997)Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463-471.Groll, M., Heinemeyer, W., Jäger, S., Ullrich, T., Bochtler, M., Wolf, D. H. and Huber, R.(1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: Amutational and crystallographic study. Proc. Natl. Acad. Sci. USA 96, <strong>10</strong>976-<strong>10</strong>983.Groll, M., Bajorek, M., Köhler, A., Moroder, L., Rubin, D. M., Huber, R., Glickman, M. H.and Finley, D. (2<strong>00</strong>0) A gated channel into the proteasome core particle. Nature Struct.Biol. 7, <strong>10</strong>62-<strong>10</strong>67.Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K.,Lindow, S., Kaiser, M. and Dudler, R. (2<strong>00</strong>8) A plant pathogen virulence factor inhibitsthe eukaryotic proteasome by a novel mechanism. Nature 452, 755-758.Clerc, J., Florea, B. I., Kraus, M., Groll, M., Huber, R., Bachmann, A. S., Dudler, R.,Driessen, C., Overkleeft, H. S. and Kaiser, M. (2<strong>00</strong>9) Syringolin A selectively labels the 20S proteasome in murine EL4 and wild-type and bortezomib-adapted leukaemic cell lines.CHEMBIOCHEM <strong>10</strong>, 2638-2643.Gräwert, M. A., Gallastegui, N., Stein, M., Schmidt, B., Kloetzel, P. M., Huber, R. andGroll, M. (20<strong>11</strong>). Elucidation of the α-keto-aldehyde binding mechanism: A lead structuremotif for proteasome inhibition. Angewandte Chemie Int. Ed. 50, 542-544.HslV/HslUBochtler, M., Hartmann, C., Song, H. K., Bourenkov, G., Bartunik, H. and Huber, R.(2<strong>00</strong>0) The structure of HslU and the ATP-dependent protease HslU-HslV.Nature 403,8<strong>00</strong>-805.Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L.and Huber, R. (2<strong>00</strong>0) Mutational studies on HslU and its docking mode with HslV. Proc.Natl. Acad. Sci. USA 97, 14<strong>10</strong>3-14<strong>10</strong>8.Ramachandran, R., Hartmann, C., Song, H. J., Huber, R. and Bochtler, M.(2<strong>00</strong>2)Functional interactions of HslV(ClpQ) with the ATPase HslU(ClpY). Proc. Natl. Acad. Sci.USA 99, 7396-7401.TricornBrandstetter, H., Kim, J. S., Groll, M. and Huber, R. (2<strong>00</strong>1) Crystal structure of the tricornprotease reveals a protein disassembly line. Nature 414, 466-470.Kim, J. S., Groll, M., Musiol, H. J., Behrendt, R., Kaiser, M., Moroder, L., Huber, R. andBrandstetter H. (2<strong>00</strong>2) Navigation inside a protease: substrate selection and product exitin the tricorn protease from Thermoplasma acidophilum. J. Mol. Biol. 324, <strong>10</strong>41-<strong>10</strong>50.Goettig, P., Groll, M., Kim, J. S., Huber, R. and Brandstetter, H. (2<strong>00</strong>2) Structures of thetricorn interacting aminopeptidase F1 with different ligands explain its catalyticmechanism. EMBO J. 21, 5343-5352.Dipeptidyl peptidase IVEngel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber,R., Bode, W., Demuth, H. U. and Brandstetter, H. (2<strong>00</strong>3) The crystal structure ofdipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymaticmechanism.Proc. Natl. Acad. Sci. USA <strong>10</strong>0, 5063-5068.DegP(HtrA)Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M., and Clausen, T. (2<strong>00</strong>2) Crystalstructure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455-459.Krojer, T., Pangerl, K., Kurt, J., Sawa, J., Stingl, C., Mechtler, K., Huber, R., Ehrmann, M.and Clausen, T. (2<strong>00</strong>8) Interplay of PDZ and protease domain of DegP ensures efficientelimination of misfolded proteins. Proc. Natl. Acad. Sci. USA <strong>10</strong>5, 7702-7707.Krojer, T., Sawa, J., Schäfer, E., Saibil, H. R, Ehrmann, M, and Clausen, T. (2<strong>00</strong>8)Structural basis for the regulated protease and chaperone function of DegP. Nature 453,885-890.Krojer, T., Sawa, J., Huber, R. and Clausen, T. (20<strong>10</strong>) HtrA proteases have a conservedactivation mechanism that can be triggered by distinct molecular cues. Nat. Struct. Mol.Biol. 17, 844-852.Merdanovic, M., Mamant, N., Meltzer, M., Poepsel, S., Auckenthaler, A., Melgaard, R.,Hauske, P., Nagel-Steger, L., Clarke, A. R., Kaiser, M., Huber, R. and Ehrmann, M.(20<strong>10</strong>) Determinants of structural and functional plasticity of a widely conserved proteasechaperone complex. Nat. Struct. Mol. Biol. 17, 837-843.64 Korean Society for Biochemistry and Molecular Biology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!