07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

&<br />

References<br />

1. Pines, J., The cell cycle kinases. Semin Cancer Biol, 1994. 5(4): p. 305-13.<br />

2. Lindqvist, A., V. Rodriguez-Bravo, and R.H. Medema, The decision to enter mitosis: feedback and redundancy in the<br />

mitotic entry network. J Cell Biol, 2009. 185(2): p. 193-202.<br />

3. Nasmyth, K., How might cohesin hold sister chromatids together? Philos Trans R Soc Lond B Biol Sci, 2005. 360(1455):<br />

p. 483-96.<br />

4. Walczak, C.E. and R. Heald, Mechanisms of mitotic spindle assembly and function. Int Rev Cytol, 2008. 265: p. 111-58.<br />

5. Kirschner, M. and T. Mitchison, Beyond self-assembly: from microtubules to morphogenesis. Cell, 1986. 45(3): p. 329-<br />

42.<br />

6. Clarke, P.R. and C. Zhang, Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol, 2008.<br />

9(6): p. 464-77.<br />

7. Karsenti, E., J. Newport, and M. Kirschner, Respective roles of centrosomes and chromatin in the conversion of<br />

microtubule arrays from interphase to metaphase. J Cell Biol, 1984. 99(1 Pt 2): p. 47s-54s.<br />

8. Maiato, H., C.L. Rieder, and A. Khodjakov, Kinetochore-driven formation of kinetochore fibers contributes to spindle<br />

assembly during animal mitosis. J Cell Biol, 2004. 167(5): p. 831-40.<br />

9. Tanenbaum, M.E. and R.H. Medema, Localized Aurora B activity spatially controls non-kinetochore microtubules<br />

during spindle assembly. Chromosoma, 2011. 120(6): p. 599-607.<br />

10. Brinkley, B.R. and E. Stubblefield, The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma,<br />

1966. 19(1): p. 28-43.<br />

11. Choo, K.H., Domain organization at the centromere and neocentromere. Dev Cell, 2001. 1(2): p. 165-77.<br />

12. Palmer, D.K., et al., Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive<br />

histone. Proc Natl Acad Sci U S A, 1991. 88(9): p. 3734-8.<br />

13. Allshire, R.C. and G.H. Karpen, Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet,<br />

2008. 9(12): p. 923-37.<br />

14. Howman, E.V., et al., Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null<br />

mice. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1148-53.<br />

15. Regnier, V., et al., CENP-A is required for accurate chromosome <strong>segregation</strong> and sustained kinetochore association of<br />

BubR1. Mol Cell Biol, 2005. 25(10): p. 3967-81.<br />

16. Guse, A., M. Mishima, and M. Glotzer, Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of<br />

cytokinesis. Curr Biol, 2005. 15(8): p. 778-86.<br />

17. Heun, P., et al., Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional<br />

ectopic kinetochores. Dev Cell, 2006. 10(3): p. 303-15.<br />

18. Blower, M.D., B.A. Sullivan, and G.H. Karpen, Conserved organization of centromeric chromatin in flies and humans.<br />

Dev Cell, 2002. 2(3): p. 319-30.<br />

19. Cheeseman, I.M. and A. Desai, Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell<br />

Biol, 2008. 9(1): p. 33-46.<br />

20. Gascoigne, K.E. and I.M. Cheeseman, Kinetochore assembly: if you build it, they will come. Curr Opin Cell Biol, 2011.<br />

23(1): p. 102-8.<br />

21. Gascoigne, K.E., et al., Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell,<br />

2011. 145(3): p. 410-22.<br />

22. Schleiffer, A., et al., CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol, 2012.<br />

14(6): p. 604-13.<br />

23. Bock, L.J., et al., Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol,<br />

2012. 14(6): p. 614-24.<br />

24. Cheeseman, I.M., et al., KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates.<br />

Mol Biol Cell, 2008. 19(2): p. 587-94.<br />

25. Desai, A., et al., KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes<br />

Dev, 2003. 17(19): p. 2421-35.<br />

26. Goshima, G., et al., Human centromere chromatin protein hMis12, essential for equal <strong>segregation</strong>, is independent of<br />

CENP-A loading pathway. J Cell Biol, 2003. 160(1): p. 25-39.<br />

27. Janke, C., et al., The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore<br />

and are important for kinetochore clustering and checkpoint control. EMBO J, 2001. 20(4): p. 777-91.<br />

28. Wigge, P.A. and J.V. Kilmartin, The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere<br />

components and has a function in chromosome <strong>segregation</strong>. J Cell Biol, 2001. 152(2): p. 349-60.<br />

29. McCleland, M.L., et al., The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to<br />

establish and maintain kinetochore-microtubule attachment. Curr Biol, 2004. 14(2): p. 131-7.<br />

30. Bharadwaj, R., W. Qi, and H. Yu, Identification of two novel components of the human NDC80 kinetochore complex. J<br />

Biol Chem, 2004. 279(13): p. 13076-85.<br />

31. Cheeseman, I.M., et al., The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.<br />

Cell, 2006. 127(5): p. 983-97.<br />

32. Theis, M., et al., Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian<br />

cell division. EMBO J, 2009. 28(10): p. 1453-65.<br />

33. Welburn, J.P., et al., The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility.<br />

Dev Cell, 2009. 16(3): p. 374-85.<br />

34. Raaijmakers, J.A., et al., RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J Cell<br />

Sci, 2009. 122(Pt 14): p. 2436-45.<br />

35. Daum, J.R., et al., Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in<br />

mitosis. Curr Biol, 2009. 19(17): p. 1467-72.<br />

36. Hanisch, A., H.H. Sillje, and E.A. Nigg, Timely anaphase onset requires a novel spindle and kinetochore complex<br />

comprising Ska1 and Ska2. EMBO J, 2006. 25(23): p. 5504-15.<br />

37. Gaitanos, T.N., et al., Stable kinetochore-microtubule interactions depend on the Ska complex and its new component<br />

Ska3/C13Orf3. EMBO J, 2009. 28(10): p. 1442-52.<br />

38. Miranda, J.J., et al., The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol, 2005. 12(2): p.<br />

138-43.<br />

39. Westermann, S., et al., Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1<br />

ring complex. Mol Cell, 2005. 17(2): p. 277-90.<br />

40. Kops, G.J., A.T. Saurin, and P. Meraldi, Finding the middle ground: how kinetochores power chromosome congression.<br />

Cell Mol Life Sci, 2010. 67(13): p. 2145-61.<br />

160

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!