07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tumors in mice. Cancer Res, 2007. 67(1): p. 160-6.<br />

299. Janssen, A., G.J. Kops, and R.H. Medema, Elevating the frequency of chromosome mis-<strong>segregation</strong> as a strategy to kill<br />

tumor cells. Proc Natl Acad Sci U S A, 2009. 106(45): p. 19108-13.<br />

300. Kalitsis, P., et al., Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice.<br />

Genes <strong>Chromosome</strong>s Cancer, 2005. 44(1): p. 29-36.<br />

301. Cahill, D.P., et al., Mutations of mitotic checkpoint genes in human cancers. Nature, 1998. 392(6673): p. 300-3.<br />

302. Tighe, A., et al., Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep, 2001. 2(7): p. 609-14.<br />

303. Hanks, S., et al., Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat<br />

Genet, 2004. 36(11): p. 1159-61.<br />

304. Matsuura, S., et al., Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with<br />

premature chromatid separation (PCS) syndrome. Am J Med Genet A, 2006. 140(4): p. 358-67.<br />

305. Wang, X., et al., Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res,<br />

2002. 62(6): p. 1662-8.<br />

306. Wang, X., et al., Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in<br />

nasopharyngeal carcinoma cells. Carcinogenesis, 2000. 21(12): p. 2293-7.<br />

307. Kasai, T., et al., Prevalent loss of mitotic spindle checkpoint in adult T-cell leukemia confers resistance to microtubule<br />

inhibitors. J Biol Chem, 2002. 277(7): p. 5187-93.<br />

308. Yoon, D.S., et al., Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer.<br />

Am J Pathol, 2002. 161(2): p. 391-7.<br />

309. Minhas, K.M., et al., Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous<br />

cell carcinoma. Int J Cancer, 2003. 107(1): p. 46-52.<br />

310. Saeki, A., et al., Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer, 2002.<br />

94(7): p. 2047-54.<br />

311. Sze, K.M., et al., Association of MAD2 expression with mitotic checkpoint competence in hepatoma cells. J Biomed Sci,<br />

2004. 11(6): p. 920-7.<br />

312. Takahashi, T., et al., Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the<br />

mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene, 1999. 18(30): p. 4295-300.<br />

313. Weitzel, D.H. and D.D. Vandre, Differential spindle assembly checkpoint response in human lung adenocarcinoma<br />

cells. Cell Tissue Res, 2000. 300(1): p. 57-65.<br />

314. Hempen, P.M., et al., A <strong>double</strong> missense variation of the BUB1 gene and a defective mitotic spindle checkpoint in the<br />

pancreatic cancer cell line Hs766T. Hum Mutat, 2003. 21(4): p. 445.<br />

315. Ouyang, B., et al., Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: evidence for mitotic checkpoint<br />

dysfunction without mutations in BUB1 and BUBR1. Clin Endocrinol (Oxf), 2002. 56(3): p. 341-50.<br />

316. Suijkerbuijk, S.J., et al., Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic<br />

variegated aneuploidy. Cancer Res, 2010. 70(12): p. 4891-900.<br />

317. Matsuura, S., et al., Chromosomal instability syndrome of total premature chromatid separation with mosaic<br />

variegated aneuploidy is defective in mitotic-spindle checkpoint. Am J Hum Genet, 2000. 67(2): p. 483-6.<br />

318. Wang, Q., et al., BUBR1 deficiency results in abnormal megakaryopoiesis. Blood, 2004. 103(4): p. 1278-85.<br />

319. Cahill, D.P., et al., Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics, 1999. 58(2): p.<br />

181-7.<br />

320. Myrie, K.A., et al., Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines.<br />

Cancer Lett, 2000. 152(2): p. 193-9.<br />

321. Haruki, N., et al., Molecular analysis of the mitotic checkpoint genes BUB1, BUBR1 and BUB3 in human lung cancers.<br />

Cancer Lett, 2001. 162(2): p. 201-5.<br />

322. Yuan, B., et al., Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability.<br />

Clin Cancer Res, 2006. 12(2): p. 405-10.<br />

323. Grabsch, H., et al., Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer--<br />

association with tumour cell proliferation. J Pathol, 2003. 200(1): p. 16-22.<br />

324. Daniel, J., et al., High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc<br />

Natl Acad Sci U S A, 2011. 108(13): p. 5384-9.<br />

325. Tanaka, K., et al., Mitotic checkpoint protein hsMAD2 as a marker predicting liver metastasis of human gastric<br />

cancers. Jpn J Cancer Res, 2001. 92(9): p. 952-8.<br />

326. Alizadeh, A.A., et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature,<br />

2000. 403(6769): p. 503-11.<br />

327. Garber, M.E., et al., Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A, 2001.<br />

98(24): p. 13784-9.<br />

328. Manning, A.L. and N.J. Dyson, pRB, a tumor suppressor with a stabilizing presence. Trends Cell Biol, 2011. 21(8): p.<br />

433-41.<br />

329. Ishida, S., et al., Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA<br />

microarray analysis. Mol Cell Biol, 2001. 21(14): p. 4684-99.<br />

330. Polager, S., et al., E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis.<br />

Oncogene, 2002. 21(3): p. 437-46.<br />

331. Hernando, E., et al., Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic<br />

control. Nature, 2004. 430(7001): p. 797-802.<br />

332. Sotillo, R., et al., Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 2007. 11(1): p.<br />

9-23.<br />

333. Schvartzman, J.M., et al., Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53<br />

pathway inhibition. Cancer Cell, 2011. 19(6): p. 701-14.<br />

334. Iwaizumi, M., et al., Human Sgo1 downregulation leads to chromosomal instability in colorectal cancer. Gut, 2009.<br />

58(2): p. 249-60.<br />

335. Barber, T.D., et al., Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers.<br />

Proc Natl Acad Sci U S A, 2008. 105(9): p. 3443-8.<br />

336. Jallepalli, P.V., et al., Securin is required for chromosomal stability in human cells. Cell, 2001. 105(4): p. 445-57.<br />

337. Wang, Z., et al., Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res, 2004.<br />

64(9): p. 2998-3001.<br />

338. Solomon, D.A., et al., Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science, 2011. 333(6045):<br />

p. 1039-43.<br />

339. Zhang, N., et al., Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S<br />

A, 2008. 105(35): p. 13033-8.<br />

340. Nasmyth, K. and C.H. Haering, Cohesin: its roles and mechanisms. Annu Rev Genet, 2009. 43: p. 525-58.<br />

341. Remeseiro, S., et al., Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication<br />

167<br />

Addendum<br />

&

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!