07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

adiotherapy in breast cancer. Breast Cancer Res, 2010. 12(2): p. R18.<br />

384. Tomonaga, T., et al., Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer.<br />

Cancer Res, 2003. 63(13): p. 3511-6.<br />

385. Van Hooser, A.A., et al., Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci,<br />

2001. 114(Pt 19): p. 3529-42.<br />

386. Barnhart, M.C., et al., HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo<br />

kinetochore. J Cell Biol, 2011. 194(2): p. 229-43.<br />

387. Fabarius, A., R. Hehlmann, and P.H. Duesberg, Instability of chromosome structure in cancer cells increases<br />

exponentially with degrees of aneuploidy. Cancer Genet Cytogenet, 2003. 143(1): p. 59-72.<br />

388. Sheltzer, J.M., et al., Aneuploidy drives genomic instability in yeast. Science, 2011. 333(6045): p. 1026-30.<br />

389. Janssen, A., et al., <strong>Chromosome</strong> <strong>segregation</strong> <strong>errors</strong> as a cause of DNA damage and structural chromosome<br />

aberrations. Science, 2011. 333(6051): p. 1895-8.<br />

390. Crasta, K., et al., DNA breaks and chromosome pulverization from <strong>errors</strong> in mitosis. Nature, 2012. 482(7383): p. 53-8.<br />

391. Quevedo, O., et al., Nondisjunction of a single chromosome leads to breakage and activation of DNA damage<br />

checkpoint in G2. PLoS Genet, 2012. 8(2): p. e1002509.<br />

392. Foijer, F., V.M. Draviam, and P.K. Sorger, Studying chromosome instability in the mouse. Biochim Biophys Acta, 2008.<br />

1786(1): p. 73-82.<br />

393. Dobles, M., et al., <strong>Chromosome</strong> mis<strong>segregation</strong> and apoptosis in mice lacking the mitotic checkpoint protein Mad2.<br />

Cell, 2000. 101(6): p. 635-45.<br />

394. Baker, D.J., et al., Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J Cell Biol, 2006. 172(4): p.<br />

529-40.<br />

395. Jeganathan, K., et al., Bub1 mediates cell death in response to chromosome mis<strong>segregation</strong> and acts to suppress<br />

spontaneous tumorigenesis. J Cell Biol, 2007. 179(2): p. 255-67.<br />

396. Weaver, B.A., et al., Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent<br />

aneuploidy due to single chromosome loss. J Cell Biol, 2003. 162(4): p. 551-63.<br />

397. Weaver, B.A., et al., Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 2007. 11(1): p. 25-36.<br />

398. Ricke, R.M., J.H. van Ree, and J.M. van Deursen, Whole chromosome instability and cancer: a complex relationship.<br />

Trends Genet, 2008. 24(9): p. 457-66.<br />

399. Ricke, R.M., K.B. Jeganathan, and J.M. van Deursen, Bub1 overexpression induces aneuploidy and tumor formation<br />

through Aurora B kinase hyperactivation. J Cell Biol, 2011. 193(6): p. 1049-64.<br />

400. van Ree, J.H., et al., Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome<br />

mis<strong>segregation</strong> and tumor formation. J Cell Biol, 2010. 188(1): p. 83-100.<br />

401. Rao, C.V., et al., Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature<br />

separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci U S A, 2005. 102(12): p. 4365-<br />

70.<br />

402. Baker, D.J., et al., Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency.<br />

Nat Cell Biol, 2008. 10(7): p. 825-36.<br />

403. Luongo, C., et al., Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res, 1994. 54(22): p. 5947-52.<br />

404. Birkbak, N.J., et al., Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer<br />

Res, 2011. 71(10): p. 3447-52.<br />

405. Roylance, R., et al., Relationship of extreme chromosomal instability with long-term survival in a retrospective<br />

analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev, 2011. 20(10): p. 2183-94.<br />

406. Chi, Y.H., et al., Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice. Int J Cancer,<br />

2009. 124(6): p. 1483-9.<br />

407. Li, M., et al., The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci U S A, 2010.<br />

107(32): p. 14188-93.<br />

408. Schliekelman, M., et al., Impaired Bub1 function in vivo compromises tension-dependent checkpoint function leading<br />

to aneuploidy and tumorigenesis. Cancer Res, 2009. 69(1): p. 45-54.<br />

409. Sotillo, R., et al., Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal.<br />

Nature, 2010. 464(7287): p. 436-40.<br />

410. Garcia-Higuera, I., et al., Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol, 2008.<br />

10(7): p. 802-11.<br />

411. Diaz-Rodriguez, E., et al., Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in<br />

vivo. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16719-24.<br />

412. Malureanu, L., et al., Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis. J Cell Biol,<br />

2010. 191(2): p. 313-29.<br />

413. Li, M., et al., Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice. J Cell<br />

Biol, 2009. 185(6): p. 983-94.<br />

414. Chesnokova, V., et al., Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. Mol<br />

Endocrinol, 2005. 19(9): p. 2371-9.<br />

415. Wang, Z., R. Yu, and S. Melmed, Mice lacking pituitary tumor transforming gene show testicular and splenic<br />

hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere<br />

division. Mol Endocrinol, 2001. 15(11): p. 1870-9.<br />

416. Uren, A.G., et al., Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene<br />

knockout phenotype. Curr Biol, 2000. 10(21): p. 1319-28.<br />

417. Thompson, S.L. and D.A. Compton, <strong>Chromosome</strong>s and cancer cells. <strong>Chromosome</strong> Res, 2010.<br />

418. Vader, G., R.H. Medema, and S.M. Lens, The chromosomal passenger complex: guiding Aurora-B through mitosis. J<br />

Cell Biol, 2006. 173(6): p. 833-7.<br />

419. Cimini, D., Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta, 2008. 1786(1): p. 32-40.<br />

420. Dalton, W.B., B. Yu, and V.W. Yang, p53 suppresses structural chromosome instability after mitotic arrest in human<br />

cells. Oncogene, 2010. 29(13): p. 1929-40.<br />

421. Dalton, W.B., et al., Human cancer cells commonly acquire DNA damage during mitotic arrest. Cancer Res, 2007.<br />

67(24): p. 11487-92.<br />

422. Quignon, F., et al., Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity<br />

in mammalian cells. Oncogene, 2007. 26(2): p. 165-72.<br />

423. Straight, A.F., et al., Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science, 2003.<br />

299(5613): p. 1743-7.<br />

424. Mortlock, A.A., et al., Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective<br />

inhibitors of aurora B kinase. J Med Chem, 2007. 50(9): p. 2213-24.<br />

425. Ditchfield, C., et al., Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E<br />

to kinetochores. J Cell Biol, 2003. 161(2): p. 267-80.<br />

169<br />

Addendum<br />

&

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!