07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

470. Marcus, A.I., et al., Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive<br />

cancer cells. J Biol Chem, 2005. 280(12): p. 11569-77.<br />

471. Huszar, D., et al., Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev, 2009. 28(1-2): p. 197-<br />

208.<br />

472. Brier, S., et al., Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer<br />

resistance to antimitotic agents. J Mol Biol, 2006. 360(2): p. 360-76.<br />

473. Tcherniuk, S., et al., Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in<br />

tumor derived cell lines. Biochem <strong>Pharma</strong>col, 2010. 79(6): p. 864-72.<br />

474. Maliga, Z. and T.J. Mitchison, Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC<br />

Chem Biol, 2006. 6: p. 2.<br />

475. Tanenbaum, M.E., et al., Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol, 2009. 19(20): p.<br />

1703-11.<br />

476. Vanneste, D., et al., The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol, 2009.<br />

19(20): p. 1712-7.<br />

477. Lok, W., R.Q. Klein, and M.W. Saif, Aurora kinase inhibitors as anti-cancer therapy. Anticancer Drugs, 2010. 21(4): p.<br />

339-50.<br />

478. Strebhardt, K. and A. Ullrich, Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer, 2006. 6(4): p. 321-30.<br />

479. Carmena, M. and W.C. Earnshaw, The cellular geography of aurora kinases. Nat Rev Mol Cell Biol, 2003. 4(11): p. 842-<br />

54.<br />

480. Barr, F.A., H.H. Sillje, and E.A. Nigg, Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol, 2004.<br />

5(6): p. 429-40.<br />

481. Yao, X., et al., CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic<br />

checkpoint. Nat Cell Biol, 2000. 2(8): p. 484-91.<br />

482. Wood, K.W., et al., Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci<br />

U S A, 2010. 107(13): p. 5839-44.<br />

483. Schafer-Hales, K., et al., Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human<br />

tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther, 2007. 6(4): p. 1317-28.<br />

484. Rieder, C.L. and H. Maiato, Stuck in division or passing through: what happens when cells cannot satisfy the spindle<br />

assembly checkpoint. Dev Cell, 2004. 7(5): p. 637-51.<br />

485. Brito, D.A. and C.L. Rieder, Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an<br />

active checkpoint. Curr Biol, 2006. 16(12): p. 1194-200.<br />

486. Shi, J., J.D. Orth, and T. Mitchison, Cell type variation in responses to antimitotic drugs that target microtubules and<br />

kinesin-5. Cancer Res, 2008. 68(9): p. 3269-76.<br />

487. Brito, D.A. and C.L. Rieder, The ability to survive mitosis in the presence of microtubule poisons differs significantly<br />

between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil Cytoskeleton, 2009. 66(8): p. 437-<br />

47.<br />

488. Stobbe, C.C., S.J. Park, and J.D. Chapman, The radiation hypersensitivity of cells at mitosis. Int J Radiat Biol, 2002.<br />

78(12): p. 1149-57.<br />

489. Westra, A. and W.C. Dewey, Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro.<br />

Int J Radiat Biol Relat Stud Phys Chem Med, 1971. 19(5): p. 467-77.<br />

490. Uetake, Y. and G. Sluder, Prolonged prometaphase blocks daughter cell proliferation despite normal completion of<br />

mitosis. Curr Biol, 2010. 20(18): p. 1666-71.<br />

491. Allan, L.A. and P.R. Clarke, Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis.<br />

Mol Cell, 2007. 26(2): p. 301-10.<br />

492. Harley, M.E., et al., Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during<br />

mitotic arrest. EMBO J, 2010. 29(14): p. 2407-20.<br />

493. Terrano, D.T., M. Upreti, and T.C. Chambers, Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as<br />

a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol, 2010. 30(3): p. 640-56.<br />

494. Vantieghem, A., et al., Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with<br />

hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem, 2002. 277(40): p. 37718-<br />

31.<br />

495. Wu, L., et al., Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and<br />

subsequent functional suppression. J Biol Chem, 2010.<br />

496. Ando, K., et al., Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol<br />

Chem, 2004. 279(24): p. 25549-61.<br />

497. Ha, G.H., et al., p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated<br />

phosphorylation. Cancer Res, 2007. 67(15): p. 7155-64.<br />

498. Huang, H.C., et al., Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell,<br />

2009. 16(4): p. 347-58.<br />

499. Manchado, E., et al., Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the<br />

PP2A/B55alpha,delta phosphatase. Cancer Cell, 2010. 18(6): p. 641-54.<br />

500. Rieder, C.L. and R.H. Medema, No way out for tumor cells. Cancer Cell, 2009. 16(4): p. 274-5.<br />

501. Zeng, X., et al., <strong>Pharma</strong>cologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent<br />

mitotic arrest in the absence of spindle damage. Cancer Cell, 2010. 18(4): p. 382-95.<br />

502. Barr, F.A. and U. Gruneberg, Cytokinesis: placing and making the final cut. Cell, 2007. 131(5): p. 847-60.<br />

503. Kaitna, S., et al., Incenp and an aurora-like kinase form a complex essential for chromosome <strong>segregation</strong> and efficient<br />

completion of cytokinesis. Curr Biol, 2000. 10(19): p. 1172-81.<br />

504. Harrington, E.A., et al., VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses<br />

tumor growth in vivo. Nat Med, 2004. 10(3): p. 262-7.<br />

505. Kaestner, P., A. Stolz, and H. Bastians, Determinants for the efficiency of anticancer drugs targeting either Aurora-A or<br />

Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther, 2009. 8(7): p. 2046-56.<br />

506. Keen, N. and S. Taylor, Mitotic drivers--inhibitors of the Aurora B Kinase. Cancer Metastasis Rev, 2009. 28(1-2): p. 185-<br />

95.<br />

507. Wilkinson, R.W., et al., AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by<br />

inducing apoptosis. Clin Cancer Res, 2007. 13(12): p. 3682-8.<br />

508. Oke, A., et al., AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells<br />

in vitro and in vivo. Cancer Res, 2009. 69(10): p. 4150-8.<br />

509. Uetake, Y. and G. Sluder, Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a<br />

“tetraploidy checkpoint”. J Cell Biol, 2004. 165(5): p. 609-15.<br />

510. Wong, C. and T. Stearns, Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and<br />

cytokinesis failure. BMC Cell Biol, 2005. 6(1): p. 6.<br />

171<br />

Addendum<br />

&

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!