07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

&<br />

of telomeres. EMBO J, 2012. 31(9): p. 2076-89.<br />

342. Gascoigne, K.E. and S.S. Taylor, Cancer cells display profound intra- and interline variation following prolonged<br />

exposure to antimitotic drugs. Cancer Cell, 2008. 14(2): p. 111-22.<br />

343. Cimini, D., et al., Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging<br />

chromosomes in human primary cells. J Cell Sci, 2002. 115(Pt 3): p. 507-15.<br />

344. Cimini, D., et al., Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue<br />

cells. J Cell Biol, 2001. 153(3): p. 517-27.<br />

345. Cimini, D., et al., Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells<br />

and error correction is achieved by two different mechanisms. J Cell Sci, 2003. 116(Pt 20): p. 4213-25.<br />

346. Cimini, D., L.A. Cameron, and E.D. Salmon, Anaphase spindle mechanics prevent mis-<strong>segregation</strong> of merotelically<br />

oriented chromosomes. Curr Biol, 2004. 14(23): p. 2149-55.<br />

347. Heneen, W.K., Kinetochores and microtubules in multipolar mitosis and chromosome orientation. Exp Cell Res, 1975.<br />

91(1): p. 57-62.<br />

348. Sluder, G., et al., The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or<br />

bipolar spindle symmetry. J Cell Sci, 1997. 110 ( Pt 4): p. 421-9.<br />

349. Lingle, W.L., et al., Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl<br />

Acad Sci U S A, 2002. 99(4): p. 1978-83.<br />

350. Sato, N., et al., Correlation between centrosome abnormalities and chromosomal instability in human pancreatic<br />

cancer cells. Cancer Genet Cytogenet, 2001. 126(1): p. 13-9.<br />

351. Pihan, G.A., et al., Centrosome defects can account for cellular and genetic changes that characterize prostate cancer<br />

progression. Cancer Res, 2001. 61(5): p. 2212-9.<br />

352. Ghadimi, B.M., et al., Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid<br />

colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes <strong>Chromosome</strong>s Cancer,<br />

2000. 27(2): p. 183-90.<br />

353. Nigg, E.A., Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer, 2002. 2(11): p.<br />

815-25.<br />

354. Shi, Q. and R.W. King, <strong>Chromosome</strong> nondisjunction yields tetraploid rather than aneuploid cells in human cell lines.<br />

Nature, 2005. 437(7061): p. 1038-42.<br />

355. Silkworth, W.T., et al., Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and<br />

chromosome mis-<strong>segregation</strong> in cancer cells. PLoS One, 2009. 4(8): p. e6564.<br />

356. Ganem, N.J., S.A. Godinho, and D. Pellman, A mechanism linking extra centrosomes to chromosomal instability.<br />

Nature, 2009. 460(7252): p. 278-82.<br />

357. Fujiwara, T., et al., Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 2005.<br />

437(7061): p. 1043-7.<br />

358. Davoli, T. and T. de Lange, Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes<br />

transformation of mouse cells. Cancer Cell, 2012. 21(6): p. 765-76.<br />

359. Overholtzer, M. and J.S. Brugge, The cell biology of cell-in-cell structures. Nat Rev Mol Cell Biol, 2008. 9(10): p. 796-<br />

809.<br />

360. Overholtzer, M., et al., A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell, 2007.<br />

131(5): p. 966-79.<br />

361. Kracjovic, M., et al., A non-genetic route to aneuploidy in human cancers. Nature Cell Biol, 2010.<br />

362. Janssen, A. and R.H. Medema, Entosis: aneuploidy by invasion. Nat Cell Biol, 2011. 13(3): p. 199-201.<br />

363. Bakhoum, S.F., G. Genovese, and D.A. Compton, Deviant kinetochore microtubule dynamics underlie chromosomal<br />

instability. Curr Biol, 2009. 19(22): p. 1937-42.<br />

364. Bakhoum, S.F., et al., Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell<br />

Biol, 2009. 11(1): p. 27-35.<br />

365. Kabeche, L. and D.A. Compton, Checkpoint-independent stabilization of kinetochore-microtubule attachments by<br />

Mad2 in human cells. Curr Biol, 2012. 22(7): p. 638-44.<br />

366. Salimian, K.J., et al., Feedback control in sensing chromosome biorientation by the Aurora B kinase. Curr Biol, 2011.<br />

21(13): p. 1158-65.<br />

367. Kinzler, K.W., et al., Identification of FAP locus genes from chromosome 5q21. Science, 1991. 253(5020): p. 661-5.<br />

368. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80.<br />

369. Rusan, N.M. and M. Peifer, Original CIN: reviewing roles for APC in chromosome instability. J Cell Biol, 2008. 181(5): p.<br />

719-26.<br />

370. Kaplan, K.B., et al., A role for the Adenomatous Polyposis Coli protein in chromosome <strong>segregation</strong>. Nat Cell Biol, 2001.<br />

3(4): p. 429-32.<br />

371. Fodde, R., et al., Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol, 2001.<br />

3(4): p. 433-8.<br />

372. Dikovskaya, D., et al., Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J<br />

Cell Biol, 2007. 176(2): p. 183-95.<br />

373. Draviam, V.M., et al., Misorientation and reduced stretching of aligned sister kinetochores promote chromosome<br />

mis<strong>segregation</strong> in EB1- or APC-depleted cells. EMBO J, 2006. 25(12): p. 2814-27.<br />

374. Zhang, J., S. Ahmad, and Y. Mao, BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment. J<br />

Cell Biol, 2007. 178(5): p. 773-84.<br />

375. Aoki, K., et al., Chromosomal instability by beta-catenin/TCF transcription in APC or beta-catenin mutant cells.<br />

Oncogene, 2007. 26(24): p. 3511-20.<br />

376. Aoki, K. and M.M. Taketo, Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci,<br />

2007. 120(Pt 19): p. 3327-35.<br />

377. Olszak, A.M., et al., Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol, 2011.<br />

13(7): p. 799-808.<br />

378. Pampalona, J., et al., Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes<br />

<strong>Chromosome</strong>s Cancer, 2010. 49(4): p. 368-78.<br />

379. Ichijima, Y., et al., DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.<br />

PLoS One, 2010. 5(1): p. e8821.<br />

380. Chan, K.L., et al., Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol, 2009.<br />

11(6): p. 753-60.<br />

381. Stewenius, Y., et al., Defective chromosome <strong>segregation</strong> and telomere dysfunction in aggressive Wilms’ tumors. Clin<br />

Cancer Res, 2007. 13(22 Pt 1): p. 6593-602.<br />

382. Chan, K.L., P.S. North, and I.D. Hickson, BLM is required for faithful chromosome <strong>segregation</strong> and its localization<br />

defines a class of ultrafine anaphase bridges. EMBO J, 2007. 26(14): p. 3397-409.<br />

383. Hu, Z., et al., The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to<br />

168

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!