07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

&<br />

Oncogene, 2009. 28(10): p. 1366-78.<br />

167. Liu, X. and M. Winey, The MPS1 Family of Protein Kinases. Annu Rev Biochem, 2012.<br />

168. Chu, M.L., et al., Crystal structure of the catalytic domain of the mitotic checkpoint kinase Mps1 in complex with<br />

SP600125. J Biol Chem, 2008. 283(31): p. 21495-500.<br />

169. Wang, W., et al., Structural and mechanistic insights into Mps1 kinase activation. J Cell Mol Med, 2009. 13(8B): p.<br />

1679-94.<br />

170. Mattison, C.P., et al., Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem, 2007. 282(42):<br />

p. 30553-61.<br />

171. Kang, J., et al., Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. Proc<br />

Natl Acad Sci U S A, 2007. 104(51): p. 20232-7.<br />

172. Jelluma, N., et al., Chromosomal instability by inefficient Mps1 auto-activation due to a weakened mitotic checkpoint<br />

and lagging chromosomes. PLoS One, 2008. 3(6): p. e2415.<br />

173. Xu, Q., et al., Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1<br />

phosphorylation. Mol Biol Cell, 2009. 20(1): p. 10-20.<br />

174. Dou, Z., et al., Quantitative mass spectrometry analysis reveals similar substrate consensus motif for human Mps1<br />

kinase and Plk1. PLoS One, 2011. 6(4): p. e18793.<br />

175. Tyler, R.K., et al., Phosphoregulation of human Mps1 kinase. Biochem J, 2009. 417(1): p. 173-81.<br />

176. Colombo, R., et al., Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase.<br />

Cancer Res, 2010. 70(24): p. 10255-64.<br />

177. Glotzer, M., The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol, 2009. 10(1):<br />

p. 9-20.<br />

178. Jiang, W., et al., PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell,<br />

1998. 2(6): p. 877-85.<br />

179. Mishima, M., S. Kaitna, and M. Glotzer, Central spindle assembly and cytokinesis require a kinesin-like protein/<br />

RhoGAP complex with microtubule bundling activity. Dev Cell, 2002. 2(1): p. 41-54.<br />

180. Pavicic-Kaltenbrunner, V., M. Mishima, and M. Glotzer, Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/<br />

MKLP1 to form the centralspindlin complex. Mol Biol Cell, 2007. 18(12): p. 4992-5003.<br />

181. Yuce, O., A. Piekny, and M. Glotzer, An ECT2-centralspindlin complex regulates the localization and function of RhoA. J<br />

Cell Biol, 2005. 170(4): p. 571-82.<br />

182. Wolfe, B.A., et al., Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate<br />

cleavage furrow formation. PLoS Biol, 2009. 7(5): p. e1000110.<br />

183. Neef, R., et al., Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of<br />

Cdk1. Nat Cell Biol, 2007. 9(4): p. 436-44.<br />

184. Lens, S.M., E.E. Voest, and R.H. Medema, Shared and separate functions of polo-like kinases and aurora kinases in<br />

cancer. Nat Rev Cancer, 2010. 10(12): p. 825-41.<br />

185. Neef, R., et al., Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol, 2006. 16(3): p.<br />

301-7.<br />

186. Vazquez-Novelle, M.D. and M. Petronczki, Relocation of the chromosomal passenger complex prevents mitotic<br />

checkpoint engagement at anaphase. Curr Biol, 2010. 20(15): p. 1402-7.<br />

187. Ban, R., et al., Human mitotic spindle-associated protein PRC1 inhibits MgcRacGAP activity toward Cdc42 during the<br />

metaphase. J Biol Chem, 2004. 279(16): p. 16394-402.<br />

188. Bement, W.M., H.A. Benink, and G. von Dassow, A microtubule-dependent zone of active RhoA during cleavage plane<br />

specification. J Cell Biol, 2005. 170(1): p. 91-101.<br />

189. Nishimura, Y. and S. Yonemura, Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during<br />

cytokinesis. J Cell Sci, 2006. 119(Pt 1): p. 104-14.<br />

190. Matsumura, F., Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol, 2005. 15(7): p. 371-7.<br />

191. Castrillon, D.H. and S.A. Wasserman, Diaphanous is required for cytokinesis in Drosophila and shares domains of<br />

similarity with the products of the limb deformity gene. Development, 1994. 120(12): p. 3367-77.<br />

192. Severson, A.F., D.L. Baillie, and B. Bowerman, A Formin Homology protein and a profilin are required for cytokinesis<br />

and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol, 2002. 12(24): p. 2066-75.<br />

193. Watanabe, S., et al., mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during<br />

cytokinesis in NIH 3T3 cells. Mol Biol Cell, 2008. 19(5): p. 2328-38.<br />

194. Fededa, J.P. and D.W. Gerlich, Molecular control of animal cell cytokinesis. Nat Cell Biol, 2012. 14(5): p. 440-7.<br />

195. Skop, A.R., et al., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms.<br />

Science, 2004. 305(5680): p. 61-6.<br />

196. Steigemann, P., et al., Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 2009. 136(3):<br />

p. 473-84.<br />

197. Norden, C., et al., The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent<br />

chromosome breakage. Cell, 2006. 125(1): p. 85-98.<br />

198. Hoeijmakers, J.H., Genome maintenance mechanisms for preventing cancer. Nature, 2001. 411(6835): p. 366-74.<br />

199. Ciccia, A. and S.J. Elledge, The DNA damage response: making it safe to play with knives. Mol Cell, 2010. 40(2): p.<br />

179-204.<br />

200. Walker, J.R., R.A. Corpina, and J. Goldberg, Structure of the Ku heterodimer bound to DNA and its implications for<br />

<strong>double</strong>-strand break repair. Nature, 2001. 412(6847): p. 607-14.<br />

201. Kienker, L.J., E.K. Shin, and K. Meek, Both V(D)J recombination and radioresistance require DNA-PK kinase activity,<br />

though minimal levels suffice for V(D)J recombination. Nucleic Acids Res, 2000. 28(14): p. 2752-61.<br />

202. Kurimasa, A., et al., Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in<br />

DNA strand break rejoining. Mol Cell Biol, 1999. 19(5): p. 3877-84.<br />

203. Costantini, S., et al., Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by<br />

DNA-PK. DNA Repair (Amst), 2007. 6(6): p. 712-22.<br />

204. Nick McElhinny, S.A., et al., Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol, 2000. 20(9): p. 2996-<br />

3003.<br />

205. Oliver, F.J., J. Menissier-de Murcia, and G. de Murcia, Poly(ADP-ribose) polymerase in the cellular response to DNA<br />

damage, apoptosis, and disease. Am J Hum Genet, 1999. 64(5): p. 1282-8.<br />

206. Lim, D.S., et al., ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature, 2000. 404(6778): p. 613-7.<br />

207. Rogakou, E.P., et al., DNA <strong>double</strong>-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem,<br />

1998. 273(10): p. 5858-68.<br />

208. Burma, S., et al., ATM phosphorylates histone H2AX in response to DNA <strong>double</strong>-strand breaks. J Biol Chem, 2001.<br />

276(45): p. 42462-7.<br />

209. Celeste, A., et al., Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol,<br />

2003. 5(7): p. 675-9.<br />

164

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!