07.12.2012 Views

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

Chromosome segregation errors: a double-edged sword - TI Pharma

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

&<br />

22(6): p. 1321-9.<br />

84. Hwang, L.H., et al., Budding yeast Cdc20: a target of the spindle checkpoint. Science, 1998. 279(5353): p. 1041-4.<br />

85. Kim, S.H., et al., Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science, 1998. 279(5353):<br />

p. 1045-7.<br />

86. Fang, G., H. Yu, and M.W. Kirschner, The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary<br />

complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev, 1998. 12(12): p. 1871-83.<br />

87. Wassmann, K. and R. Benezra, Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc Natl<br />

Acad Sci U S A, 1998. 95(19): p. 11193-8.<br />

88. Wu, H., et al., p55CDC/hCDC20 is associated with BUBR1 and may be a downstream target of the spindle checkpoint<br />

kinase. Oncogene, 2000. 19(40): p. 4557-62.<br />

89. Hardwick, K.G., et al., MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p,<br />

Cdc20p, and Mad2p. J Cell Biol, 2000. 148(5): p. 871-82.<br />

90. Tang, Z., et al., Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell, 2001.<br />

1(2): p. 227-37.<br />

91. Sudakin, V., G.K. Chan, and T.J. Yen, Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of<br />

BUBR1, BUB3, CDC20, and MAD2. J Cell Biol, 2001. 154(5): p. 925-36.<br />

92. Fraschini, R., et al., Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require<br />

intact kinetochores. EMBO J, 2001. 20(23): p. 6648-59.<br />

93. Millband, D.N. and K.G. Hardwick, Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting<br />

complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol Cell Biol, 2002. 22(8):<br />

p. 2728-42.<br />

94. Poddar, A., P.T. Stukenberg, and D.J. Burke, Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2<br />

assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot Cell, 2005. 4(5): p.<br />

867-78.<br />

95. Irniger, S., et al., Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding<br />

yeast. Cell, 1995. 81(2): p. 269-78.<br />

96. Sudakin, V., et al., The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins<br />

for destruction at the end of mitosis. Mol Biol Cell, 1995. 6(2): p. 185-97.<br />

97. King, R.W., et al., A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin<br />

to cyclin B. Cell, 1995. 81(2): p. 279-88.<br />

98. Cohen-Fix, O., et al., Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation<br />

of the anaphase inhibitor Pds1p. Genes Dev, 1996. 10(24): p. 3081-93.<br />

99. Funabiki, H., K. Kumada, and M. Yanagida, Fission yeast Cut1 and Cut2 are essential for sister chromatid separation,<br />

concentrate along the metaphase spindle and form large complexes. EMBO J, 1996. 15(23): p. 6617-28.<br />

100. Holloway, S.L., et al., Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting<br />

factor. Cell, 1993. 73(7): p. 1393-402.<br />

101. Uhlmann, F., F. Lottspeich, and K. Nasmyth, Sister-chromatid separation at anaphase onset is promoted by cleavage<br />

of the cohesin subunit Scc1. Nature, 1999. 400(6739): p. 37-42.<br />

102. Luo, X., et al., The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to<br />

either Mad1 or Cdc20. Mol Cell, 2002. 9(1): p. 59-71.<br />

103. Sironi, L., et al., Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding<br />

mechanism for the spindle checkpoint. EMBO J, 2002. 21(10): p. 2496-506.<br />

104. Mapelli, M., et al., The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint.<br />

Cell, 2007. 131(4): p. 730-43.<br />

105. Luo, X., et al., The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol, 2004.<br />

11(4): p. 338-45.<br />

106. De Antoni, A., et al., The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint.<br />

Curr Biol, 2005. 15(3): p. 214-25.<br />

107. Lara-Gonzalez, P., et al., BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci,<br />

2011. 124(Pt 24): p. 4332-45.<br />

108. Burton, J.L. and M.J. Solomon, Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint.<br />

Genes Dev, 2007. 21(6): p. 655-67.<br />

109. Elowe, S., et al., Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci,<br />

2010. 123(Pt 1): p. 84-94.<br />

110. King, E.M., S.J. van der Sar, and K.G. Hardwick, Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are<br />

critical for the spindle checkpoint. PLoS One, 2007. 2(4): p. e342.<br />

111. Pfleger, C.M. and M.W. Kirschner, The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1.<br />

Genes Dev, 2000. 14(6): p. 655-65.<br />

112. Tang, Z., et al., Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle<br />

checkpoint. Mol Cell, 2004. 16(3): p. 387-97.<br />

113. Klebig, C., D. Korinth, and P. Meraldi, Bub1 regulates chromosome <strong>segregation</strong> in a kinetochore-independent manner.<br />

J Cell Biol, 2009. 185(5): p. 841-58.<br />

114. Warren, C.D., et al., Distinct chromosome <strong>segregation</strong> roles for spindle checkpoint proteins. Mol Biol Cell, 2002. 13(9):<br />

p. 3029-41.<br />

115. Perera, D., et al., Bub1 maintains centromeric cohesion by activation of the spindle checkpoint. Dev Cell, 2007. 13(4):<br />

p. 566-79.<br />

116. Jelluma, N., et al., Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell, 2008.<br />

132(2): p. 233-46.<br />

117. Tighe, A., O. Staples, and S. Taylor, Mps1 kinase activity restrains anaphase during an unperturbed mitosis and<br />

targets Mad2 to kinetochores. J Cell Biol, 2008. 181(6): p. 893-901.<br />

118. Sliedrecht, T., et al., Chemical genetic inhibition of Mps1 in stable human cell lines reveals novel aspects of Mps1<br />

function in mitosis. PLoS One, 2010. 5(4): p. e10251.<br />

119. Maciejowski, J., et al., Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to<br />

control M phase timing and spindle checkpoint signaling. J Cell Biol, 2010. 190(1): p. 89-100.<br />

120. Yamagishi, Y., et al., MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat<br />

Cell Biol, 2012.<br />

121. Shepperd, L.A., et al., Phosphodependent Recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 Kinase Maintains the<br />

Spindle Checkpoint. Curr Biol, 2012. 22(10): p. 891-9.<br />

122. London, N., et al., Phosphoregulation of Spc105 by Mps1 and PP1 Regulates Bub1 Localization to Kinetochores. Curr<br />

Biol, 2012. 22(10): p. 900-6.<br />

123. Kwiatkowski, N., et al., Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol,<br />

162

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!