17.12.2012 Views

General Design Principles for DuPont Engineering Polymers - Module

General Design Principles for DuPont Engineering Polymers - Module

General Design Principles for DuPont Engineering Polymers - Module

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Form of section Area A<br />

d<br />

d<br />

R<br />

R<br />

1 1<br />

b<br />

B<br />

b<br />

1 1<br />

y 1<br />

y 2<br />

R R0<br />

1<br />

R R0<br />

1<br />

y 1<br />

y 2<br />

2<br />

y1 R 1 y 1<br />

2<br />

2<br />

2<br />

R 1 1<br />

αα<br />

1<br />

R<br />

R<br />

R<br />

t<br />

1<br />

R<br />

α<br />

2<br />

2<br />

2<br />

2<br />

α<br />

α α<br />

2<br />

y 1<br />

y 2<br />

y 1<br />

1<br />

y 2<br />

y 1<br />

1<br />

y 2<br />

t<br />

(1)<br />

(2)<br />

(3)<br />

(1) Circular sector<br />

(2) Very thin annulus<br />

(3) Sector of thin annulus<br />

A = 1 bd<br />

2<br />

A = 1 (B + b)d<br />

2<br />

Table 4.01. Properties of Sections (continued)<br />

y 1 = 2 d<br />

3<br />

y 2 = 1 d<br />

3<br />

y 1 = d<br />

y 2 = d<br />

A = πR 2 y 1 = y 2 = R<br />

A = π(R 2 – R 2 )<br />

0<br />

A = 1 π R 2<br />

2<br />

A = α R 2<br />

A = 1 R 2 (2α<br />

2<br />

– sin 2α)<br />

A = 2 πRt<br />

A = 2 αRt<br />

Distance from<br />

centroid to extremities<br />

of section y1, y2<br />

2B + b<br />

3(B + b)<br />

B + 2b<br />

3(B + b)<br />

17<br />

Moments of inertia I1 and I2<br />

about principal<br />

central axes 1 and 2<br />

I 1 = 1 bd 3<br />

36<br />

I1 = d3 (B 2 + 4Bb + b 2 )<br />

36(B + b)<br />

I = 1 πR 4<br />

4<br />

y 1 = y 2 = R I = 1 π(R 4 – R 4 )<br />

y 1 = 0.5756R<br />

y 2 = 0.4244R<br />

y1 = R 1 –<br />

2 sin α<br />

� 3α �<br />

y2 = 2R<br />

sin α<br />

3α<br />

y1 = R 1 –<br />

4 sin3 α<br />

� 6α – 3 sin 2α �<br />

y 2 =<br />

R<br />

4 sin3 α<br />

� – cos α<br />

6α – 3 sin 2α<br />

�<br />

r 1 =<br />

Radii of gyration r1 and r2<br />

about principal<br />

central axes<br />

r 1 = 0.2358d<br />

r = 1 R<br />

2<br />

d<br />

6(B + b)<br />

r = 4 0 √ (R2 + R 2 1 )<br />

4<br />

0<br />

I 1 = 0.1098R 4<br />

I2 = 1 πR 4<br />

8<br />

I1 = 1 R 4 α + sin α cos α<br />

4 �<br />

I2 = 1 R 4 �α– sin α cos α�<br />

4<br />

I 1 = R4<br />

α – sin α cos α<br />

4 �<br />

+ 2 sin 3 α cos α<br />

–<br />

– 16 sin 2 α<br />

9α<br />

16 sin 6 α<br />

9(α – sin α cos α<br />

4<br />

I2 =<br />

R<br />

(3 � – 3 sin � cos �<br />

12<br />

– 2 sin 3 � cos ��<br />

r 1 = 0.2643R<br />

r 2 = 1 R<br />

2<br />

y 1 = y 2 = R I = π R 3 t r = 0.707R<br />

y 1 = R<br />

1 – sin α<br />

� α �<br />

y1 = 2R sin α � – cos α<br />

α<br />

�<br />

I1 =R 3t α + sin α cos α – 2 sin2 � α �<br />

α<br />

I 2 =R 3 t (α – sin α cos α)<br />

�<br />

�<br />

r 1 =<br />

√ 2(B2 + 4Bb + b 2 )<br />

1 R√ 1 + sin α cos α 16 sin2 α<br />

2 α 9α 2<br />

r2 = 1 R 1 –<br />

sin α cos α<br />

2 √ α<br />

r 2 = 1 R √ 1 + 2 sin3 α cos α<br />

2 � – sin α cos α<br />

–<br />

64 sin6 α<br />

9(2α – sin 2α) 2<br />

r 2 = 1 R√ 1 – 2 sin3 α cos α<br />

2 3(α – sin α cos α)<br />

r 1 =<br />

R √ α + sin α cos α – 2 sin2 α/α<br />

2α<br />

r 2 = R √<br />

α – sin α cos α<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!