06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.5. JUSTIFICATION FOR THE MULTIPLIER METHOD 127<br />

Let Ux = y and consider PLy = b. In other words, solve,<br />

⎛<br />

⎝ 1 0 0<br />

⎞ ⎛<br />

0 0 1 ⎠ ⎝ 1 0 0<br />

⎞ ⎛<br />

4 1 0 ⎠ ⎝ y ⎞ ⎛<br />

1<br />

y 2<br />

⎠ = ⎝ 1 2<br />

0 1 0 1 0 1 y 3 3<br />

Then multiplying both sides by P gives<br />

⎛<br />

⎝ 1 0 0<br />

4 1 0<br />

1 0 1<br />

⎞ ⎛ ⎞ ⎛ ⎞<br />

⎠ ⎝ y 1<br />

y 2<br />

y 3<br />

⎠ = ⎝ 1 3 ⎠<br />

2<br />

⎞<br />

⎠ .<br />

and so<br />

⎛<br />

y = ⎝<br />

y 1<br />

y 2<br />

y 3<br />

⎞ ⎛<br />

⎠ = ⎝<br />

Now Ux = y and so it only remains to solve<br />

⎛<br />

⎛<br />

⎝ 1 2 3 2 ⎞<br />

0 −5 −11 −7 ⎠ ⎜<br />

⎝<br />

0 0 0 −2<br />

1<br />

−1<br />

1<br />

x 1<br />

x 2<br />

x 3<br />

x 4<br />

⎞<br />

⎠ .<br />

⎞<br />

⎛<br />

⎟<br />

⎠ = ⎝<br />

1 −1<br />

1<br />

⎞<br />

⎠<br />

which yields<br />

⎛<br />

⎜<br />

⎝<br />

x 1<br />

x 2<br />

x 3<br />

x 4<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

1<br />

5 + 7 5 t<br />

9<br />

10 − 11<br />

5 t<br />

t<br />

− 1 2<br />

⎞<br />

⎟<br />

⎠ : t ∈ R.<br />

5.5 Justification For The Multiplier Method<br />

Why does the multiplier method work for finding an LU factorization? Suppose A is a<br />

matrix which has the property that the row reduced echelon form for A may be achieved<br />

using only the row operations which involve replacing a row with itself added to a multiple<br />

of another row. It is not ever necessary to switch rows. Thus every row which is replaced<br />

using this row operation in obtaining the echelon form may be modified by using a row<br />

which is above it. Furthermore, in the multiplier method for finding the LU factorization,<br />

we zero out the elements below the pivot entry in first column and then the next and so on<br />

when scanning from the left. In terms of elementary matrices, this means the row operations<br />

used to reduce A to upper triangular form correspond to multiplication on the left by lower<br />

triangular matrices having all ones down the main diagonal and the sequence of elementary<br />

matrices which row reduces A has the property that in scanning the list of elementary<br />

matrices from the right to the left, this list consists of several matrices which involve only<br />

changes from the identity in the first column, then several which involve only changes from<br />

the identity in the second column and so forth. More precisely, E p ···E 1 A = U where U<br />

is upper triangular, each E i is a lower triangular elementary matrix having all ones down<br />

the main diagonal, for some r i , each of E r1 ···E 1 differs from the identity only in the first<br />

column, each of E r2 ···E r1 +1 differs from the identity only in the second column and so<br />

Will be L<br />

{ }} {<br />

forth. Therefore, A = E1 −1 ···Ep−1 −1 E−1 p U. You multiply the inverses in the reverse order.<br />

Now each of the E −1<br />

i is also lower triangular with 1 down the main diagonal. Therefore<br />

their product has this property. Recall also that if E i equals the identity matrix except

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!