06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

38 MATRICES AND LINEAR TRANSFORMATIONS<br />

matrix which is obtained by adding corresponding entries. Thus<br />

⎛<br />

⎝ 1 2<br />

⎞ ⎛<br />

3 4 ⎠ + ⎝ −1 4<br />

⎞ ⎛<br />

2 8 ⎠ = ⎝ 0 6<br />

5 12<br />

5 2 6 −4 11 −2<br />

Two matrices are equal exactly when they are the same size and the corresponding entries<br />

are identical. Thus<br />

⎛ ⎞<br />

0 0 ( )<br />

⎝ 0 0 ⎠ 0 0<br />

≠<br />

0 0<br />

0 0<br />

because they are different sizes. As noted above, you write (c ij ) for the matrix C whose<br />

ij th entry is c ij . In doing arithmetic with matrices you must define what happens in terms<br />

of the c ij sometimes called the entries of the matrix or the components of the matrix.<br />

The above discussion stated for general matrices is given in the following definition.<br />

Definition 2.1.1 Let A =(a ij ) and B =(b ij ) be two m × n matrices. Then A + B = C<br />

where<br />

C =(c ij )<br />

for c ij = a ij + b ij . Also if x is a scalar,<br />

xA =(c ij )<br />

where c ij = xa ij . The number A ij will typically refer to the ij th entry of the matrix A. The<br />

zero matrix, denoted by 0 will be the matrix consisting of all zeros.<br />

Do not be upset by the use of the subscripts, ij. The expression c ij = a ij + b ij is just<br />

saying that you add corresponding entries to get the result of summing two matrices as<br />

discussed above.<br />

Note that there are 2 × 3 zero matrices, 3 × 4 zero matrices, etc. In fact for every size<br />

there is a zero matrix.<br />

With this definition, the following properties are all obvious but you should verify all of<br />

these properties are valid for A, B, and C, m × n matrices and 0 an m × n zero matrix,<br />

the commutative law of addition,<br />

the associative law for addition,<br />

the existence of an additive identity,<br />

⎞<br />

⎠ .<br />

A + B = B + A, (2.1)<br />

(A + B)+C = A +(B + C) , (2.2)<br />

A +0=A, (2.3)<br />

A +(−A) =0, (2.4)<br />

the existence of an additive inverse. Also, for α, β scalars, the following also hold.<br />

α (A + B) =αA + αB, (2.5)<br />

(α + β) A = αA + βA, (2.6)<br />

α (βA) =αβ (A) , (2.7)<br />

1A = A. (2.8)<br />

The above properties, (2.1) - (2.8) are known as the vector space axioms and the fact<br />

that the m × n matrices satisfy these axioms is what is meant by saying this set of matrices<br />

with addition and scalar multiplication as defined above forms a vector space.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!