06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.3. THE MATHEMATICAL THEORY OF DETERMINANTS 95<br />

Of course you can assume l /∈ {i 1 , ··· ,i r } because there is nothing to prove if the l th<br />

row is one of the chosen ones. The above matrix has determinant 0. This is because if<br />

p/∈{j 1 , ··· ,j r } then the above would be a submatrix of A which is too large to have non<br />

zero determinant. On the other hand, if p ∈{j 1 , ··· ,j r } then the above matrix has two<br />

columns which are equal so its determinant is still 0.<br />

Expand the determinant of the above matrix along the last column. Let C k denote the<br />

cofactor associated with the entry a ik p. This is not dependent on the choice of p. Remember,<br />

you delete the column and the row the entry is in and take the determinant of what is left<br />

and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated<br />

with a lp . This is given to be nonzero, it being the determinant of the matrix<br />

⎛<br />

Thus<br />

which implies<br />

a lp =<br />

⎜<br />

⎝<br />

⎞<br />

a i1j 1<br />

··· a i1j r<br />

.<br />

⎟<br />

. ⎠<br />

a irj 1<br />

··· a irj r<br />

0=a lp C +<br />

r∑<br />

k=1<br />

r∑<br />

C k a ik p<br />

k=1<br />

−C k<br />

C<br />

a i k p ≡<br />

r∑<br />

m k a ik p<br />

Since this is true for every p and since m k does not depend on p, this has shown the l th row<br />

is a linear combination of the i 1 ,i 2 , ··· ,i r rows. <br />

k=1<br />

Corollary 3.3.24 The determinant rank equals the row rank.<br />

Proof: From Theorem 3.3.23, every row is in the span of r rows where r is the determinant<br />

rank. Therefore, the row rank (dimension of the span of the rows) is no larger than<br />

the determinant rank. Could the row rank be smaller than the determinant rank? If so,<br />

it follows from Theorem 3.3.23 that there exist p rows for p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!