06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

98 DETERMINANTS<br />

Corollary 3.4.3 Let A i and B i be n × n matrices and suppose<br />

A 0 + A 1 λ + ···+ A m λ m = B 0 + B 1 λ + ···+ B m λ m<br />

for all |λ| large enough. Then A i = B i for all i. Consequently if λ is replaced by any n × n<br />

matrix, the two sides will be equal. That is, for C any n × n matrix,<br />

A 0 + A 1 C + ···+ A m C m = B 0 + B 1 C + ···+ B m C m .<br />

Proof: Subtract and use the result of the lemma. <br />

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.<br />

Theorem 3.4.4 Let A be an n×n matrix and let p (λ) ≡ det (λI − A) be the characteristic<br />

polynomial. Then p (A) =0.<br />

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI − A) for|λ| large.<br />

(If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such<br />

λ, (λI − A) −1 exists.) Therefore, by Theorem 3.3.18<br />

C (λ) =p (λ)(λI − A) −1 .<br />

Note that each entry in C (λ) is a polynomial in λ havingdegreenomorethann − 1.<br />

Therefore, collecting the terms,<br />

C (λ) =C 0 + C 1 λ + ···+ C n−1 λ n−1<br />

for C j some n × n matrix. It follows that for all |λ| large enough,<br />

(λI − A) ( C 0 + C 1 λ + ···+ C n−1 λ n−1) = p (λ) I<br />

and so Corollary 3.4.3 may be used. It follows the matrix coefficients corresponding to equal<br />

powers of λ are equal on both sides of this equation. Therefore, if λ is replaced with A, the<br />

two sides will be equal. Thus<br />

0=(A − A) ( C 0 + C 1 A + ···+ C n−1 A n−1) = p (A) I = p (A) .<br />

3.5 Block Multiplication Of Matrices<br />

Consider the following problem<br />

)<br />

C<br />

(<br />

A B<br />

D<br />

)(<br />

E F<br />

G<br />

H<br />

You know how to do this. You get<br />

(<br />

AE + BG AF + BH<br />

CE + DG CF + DH<br />

Now what if instead of numbers, the entries, A, B, C, D, E, F, G are matrices of a size such<br />

that the multiplications and additions needed in the above formula all make sense. Would<br />

the formula be true in this case? I will show below that this is true.<br />

Suppose A is a matrix of the form<br />

⎛<br />

A =<br />

⎜<br />

⎝<br />

)<br />

.<br />

A 11 ··· A 1m<br />

⎞<br />

.<br />

.<br />

. ..<br />

.<br />

.<br />

⎟<br />

⎠ (3.17)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!