06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3. THE MATHEMATICAL THEORY OF DETERMINANTS 91<br />

Proof: Denote M by (m ij ) . Thus in the first case, m nn = a and m ni =0ifi ≠ n while<br />

in the second case, m nn = a and m in =0ifi ≠ n. From the definition of the determinant,<br />

det (M) ≡<br />

∑<br />

sgn n (k 1 , ··· ,k n ) m 1k1 ···m nkn<br />

(k 1 ,··· ,k n )<br />

Letting θ denote the position of n in the ordered list, (k 1 , ··· ,k n ) then using the earlier<br />

conventions used to prove Lemma 3.3.1, det (M) equals<br />

∑<br />

(k 1,··· ,k n)<br />

)<br />

(−1) n−θ θ<br />

sgn n−1<br />

(k 1 , ··· ,k θ−1 , k θ+1 , ··· , n−1<br />

k n m 1k1 ···m nkn<br />

Now suppose (3.14). Then if k n ≠ n, the term involving m nkn in the above expression<br />

equals zero. Therefore, the only terms which survive are those for which θ = n or in other<br />

words, those for which k n = n. Therefore, the above expression reduces to<br />

∑<br />

a sgn n−1 (k 1 , ···k n−1 ) m 1k1 ···m (n−1)kn−1 = a det (A) .<br />

(k 1 ,··· ,k n−1 )<br />

To get the assertion in the situation of (3.13) use Corollary 3.3.8 and (3.14) to write<br />

det (M) =det ( M T ) (( ))<br />

A<br />

T<br />

0<br />

=det<br />

= a det ( A T ) = a det (A) .<br />

∗ a<br />

In terms of the theory of determinants, arguably the most important idea is that of<br />

Laplace expansion along a row or a column. This will follow from the above definition of a<br />

determinant.<br />

Definition 3.3.16 Let A =(a ij ) be an n×n matrix. Then a new matrix called the cofactor<br />

matrix cof (A) is defined by cof (A) =(c ij ) where to obtain c ij delete the i th row and the<br />

j th column of A, take the determinant of the (n − 1) × (n − 1) matrix which results, (This<br />

is called the ij th minor of A. ) and then multiply this number by (−1) i+j . To make the<br />

formulas easier to remember, cof (A) ij<br />

will denote the ij th entry of the cofactor matrix.<br />

The following is the main result. Earlier this was given as a definition and the outrageous<br />

totally unjustified assertion was made that the same number would be obtained by expanding<br />

the determinant along any row or column. The following theorem proves this assertion.<br />

Theorem 3.3.17 Let A be an n × n matrix where n ≥ 2. Then<br />

det (A) =<br />

n∑<br />

a ij cof (A) ij<br />

=<br />

j=1<br />

n∑<br />

a ij cof (A) ij<br />

. (3.15)<br />

The first formula consists of expanding the determinant along the i th row and the second<br />

expands the determinant along the j th column.<br />

Proof: Let (a i1 , ··· ,a in )bethei th row of A. LetB j be the matrix obtained from A by<br />

leaving every row the same except the i th row which in B j equals (0, ··· , 0,a ij , 0, ··· , 0) .<br />

Then by Corollary 3.3.9,<br />

n∑<br />

det (A) = det (B j )<br />

j=1<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!