06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.3. TRANSCENDENTAL NUMBERS 455<br />

Notethisshowsπ is irrational. If π = k/m where k, m are integers, then both iπ and<br />

−iπ are roots of the polynomial with integer coefficients,<br />

m 2 x 2 + k 2<br />

which would require from what was just shown that<br />

0 ≠2+e iπ + e −iπ<br />

whichisnotthecasesincethesumontherightequals0.<br />

The following corollary follows from this.<br />

Corollary F.3.3 Let K and c i for i =1, ··· ,n be nonzero integers. For each k between 1<br />

and n let {β (k) i<br />

} m(k)<br />

i=1<br />

be the roots of a polynomial with integer coefficients,<br />

where v k ,u k ≠0.Then<br />

⎛<br />

∑m 1<br />

K + c 1<br />

⎝<br />

e β(1) j<br />

j=1<br />

Q k (x) ≡ v k x m k<br />

+ ···+ u k<br />

⎞ ⎛<br />

∑m 2<br />

⎠ + c 2<br />

⎝<br />

e β(2) j<br />

j=1<br />

⎞ ⎛<br />

∑<br />

⎠ + ···+ c n<br />

m n<br />

⎝<br />

e β(n) j<br />

j=1<br />

⎞<br />

⎠ ≠0.<br />

Proof: Defining f k (x) andI k (s) as in Lemma F.3.2, it follows from Lemma F.3.2 that<br />

for each k =1, ··· ,n,<br />

∑<br />

I k (β (k) i<br />

) =<br />

c k<br />

m k<br />

i=1<br />

(<br />

∑m k<br />

K k + c k<br />

deg(f k )<br />

∑<br />

−K k<br />

j=0<br />

i=1<br />

f (j)<br />

k<br />

e β(k) i<br />

) deg(fk )<br />

∑<br />

j=0<br />

∑m k<br />

(0) − c k<br />

i=1<br />

f (j)<br />

k<br />

(0)<br />

deg(f k )<br />

∑<br />

j=0<br />

f (j)<br />

k<br />

(β (k) i<br />

)<br />

This is exactly the same computation as in the beginning of that lemma except one adds<br />

∑ deg(fk )<br />

and subtracts K k j=0<br />

f (j)<br />

k<br />

(0) rather than K ∑ deg(f k )<br />

j=0<br />

f (j)<br />

k<br />

(0) where the K k are chosen<br />

such that their sum equals K. By Lemma F.3.2,<br />

(<br />

)<br />

∑m k<br />

∑m k ( )<br />

c k I k (β (k) i<br />

)= K k + c k e β(k) i v (m k−1)p<br />

u p k + N kp<br />

and so<br />

i=1<br />

c k<br />

m k<br />

−K k<br />

(<br />

v (m k−1)p<br />

k<br />

i=1<br />

(<br />

∑<br />

∑m k<br />

I k (β (k) i<br />

)= K k + c k<br />

i=1<br />

)<br />

u p k + N kp − c k N kp<br />

′<br />

i=1<br />

e β(k) i<br />

k<br />

) ( )<br />

v (m k−1)p<br />

u p k + N kp<br />

−K k v (m k−1)p<br />

k<br />

u p k + M kp<br />

for some integer M k . By multiplying each Q k (x) by a suitable constant, it can be assumed<br />

without loss of generality that all the v m k−1<br />

k<br />

u k are equal to a constant integer U. Then the<br />

above equals<br />

(<br />

)<br />

∑m k<br />

∑m k<br />

c k I k (β (k) i<br />

)= K k + c k e β(k) i (U p + N k p)<br />

i=1<br />

i=1<br />

k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!