06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

356 NORMS FOR FINITE DIMENSIONAL VECTOR SPACES<br />

Multiplying by the inverse of the matrix on the left, 1 this iteration reduces to<br />

⎛<br />

x r+1 ⎞ ⎛<br />

⎞ ⎛ ⎞ ⎛ ⎞<br />

1<br />

1<br />

0 ⎜ x r+1<br />

3<br />

0 0 x r 1<br />

1<br />

2 ⎟<br />

⎝ x r+1 ⎠ = − 1 1<br />

⎜ 4<br />

0<br />

4<br />

0<br />

⎟ ⎜ x r 3<br />

2 ⎟<br />

⎝ 2 1<br />

3<br />

0<br />

x r+1<br />

5<br />

0 ⎠ ⎝ x r ⎠ + 1<br />

⎜ 2 ⎟<br />

⎝ 3 ⎠ . (14.14)<br />

5<br />

3<br />

1<br />

4<br />

0 0 x r 5<br />

4 1<br />

Now iterate this starting with<br />

Thus<br />

Then<br />

⎛<br />

x 2 = − ⎜<br />

⎝<br />

⎛<br />

x 3 = − ⎜<br />

⎝<br />

x 1 ≡<br />

1<br />

0<br />

3<br />

0 0<br />

1 1<br />

4<br />

0<br />

4<br />

0<br />

2 1<br />

0<br />

5<br />

0<br />

5<br />

1<br />

0 0<br />

2<br />

0<br />

1<br />

0<br />

3<br />

0 0<br />

1 1<br />

4<br />

0<br />

4<br />

0<br />

2 1<br />

0<br />

5<br />

0<br />

5<br />

1<br />

0 0<br />

2<br />

0<br />

Continuing this way one finally gets<br />

⎛<br />

x 6 = − ⎜<br />

⎝<br />

1<br />

0<br />

3<br />

0 0<br />

1 1<br />

4<br />

0<br />

4<br />

0<br />

2 1<br />

0<br />

5<br />

0<br />

5<br />

1<br />

0 0<br />

2<br />

0<br />

2<br />

0<br />

⎛<br />

⎜<br />

⎝<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

0<br />

0<br />

0<br />

0<br />

x 2<br />

0<br />

0<br />

0<br />

0<br />

⎞<br />

⎟<br />

⎠ .<br />

⎞<br />

⎛<br />

⎟<br />

⎠ + ⎜<br />

⎝<br />

⎞ ⎛ { }} ⎞ { ⎛<br />

⎟ ⎜ ⎟<br />

⎠ ⎝ ⎠ + ⎜<br />

⎝<br />

1<br />

3<br />

1<br />

2<br />

3<br />

5<br />

1<br />

x5<br />

1<br />

3<br />

1<br />

2<br />

3<br />

5<br />

1<br />

⎞ ⎛{ }} ⎞{<br />

⎛<br />

. 197<br />

⎟ ⎜ . 351<br />

⎟<br />

⎠ ⎝ . 256 6 ⎠ + ⎜<br />

⎝<br />

. 822<br />

1<br />

3<br />

1<br />

2<br />

3<br />

5<br />

1<br />

⎞<br />

⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

1<br />

3<br />

1<br />

2<br />

3<br />

5<br />

1<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

1<br />

3<br />

1<br />

2<br />

3<br />

5<br />

1<br />

. 166<br />

. 26<br />

. 2<br />

. 7<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

. 216<br />

. 386<br />

. 295<br />

. 871<br />

You can keep going like this. Recall the solution is approximately equal to<br />

⎛ ⎞<br />

. 206<br />

⎜ . 379<br />

⎟<br />

⎝ . 275 ⎠<br />

. 862<br />

so you see that with no care at all and only 6 iterations, an approximate solution has been<br />

obtained which is not too far off from the actual solution.<br />

It is important to realize that a computer would use (14.12) directly. Indeed, writing<br />

the problem in terms of matrices as I have done above destroys every benefit of the method.<br />

However, it makes it a little easier to see what is happening and so this is why I have<br />

presented it in this way.<br />

Definition 14.5.3 The Gauss Seidel method, also called the method of successive corrections<br />

is given as follows. For A =(a ij ) , the iterates for the problem Ax = b are obtained<br />

according to the formula<br />

i∑<br />

j=1<br />

a ij x r+1<br />

j<br />

= −<br />

n∑<br />

j=i+1<br />

⎞<br />

⎟<br />

⎠ .<br />

a ij x r j + b i . (14.15)<br />

1 You certainly would not compute the invese in solving a large system. This is just to show you how the<br />

method works for this simple example. You would use the first description in terms of indices.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!