06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

452 FIELDS AND FIELD EXTENSIONS<br />

Letting<br />

f (x) = v(m−1)p Q p (x) x p−1<br />

(p − 1)!<br />

and I (s) be defined in terms of f (x) as above, it follows,<br />

m∑<br />

lim I (β i )=0<br />

and<br />

p→∞<br />

i=1<br />

n∑<br />

f (j) (0) = v p(m−1) u p + m 1 (p) p<br />

j=0<br />

m∑<br />

i=1 j=0<br />

n∑<br />

f (j) (β i )=m 2 (p) p<br />

where m i (p) is some integer.<br />

Proof: Let p be a prime number. Then consider the polynomial f (x) ofdegreen ≡<br />

pm + p − 1,<br />

f (x) = v(m−1)p Q p (x) x p−1<br />

(p − 1)!<br />

From (6.3)<br />

⎛<br />

⎞<br />

m∑<br />

m∑ n∑<br />

n∑<br />

c I (β i )=c ⎝e β i<br />

f (j) (0) − f (j) (β i ) ⎠<br />

i=1<br />

(<br />

m∑<br />

= K + c<br />

i=1<br />

e β i<br />

i=1<br />

j=0<br />

)<br />

∑ n<br />

f (j) (0) − K<br />

j=0<br />

j=0<br />

j=0<br />

n∑<br />

m∑ n∑<br />

f (j) (0) − c f (j) (β i ) (6.5)<br />

i=1 j=0<br />

Claim 1: lim p→∞ c ∑ m<br />

i=1 I (β i)=0.<br />

Proof: This follows right away from the definition of I ( )<br />

β j and the definition of f (x) .<br />

∣<br />

∣I ( ∫<br />

)∣ 1 ∣<br />

β j ∣ ≤ ∣β j f ( ) ∣<br />

tβ j e<br />

β j −tβ j dt<br />

0<br />

∫ 1<br />

|v| (m−1)p ∣ ∣Q ( )∣<br />

tβ j ∣<br />

p ∣ ∣ t<br />

p−1 ∣β j p−1<br />

≤<br />

dt<br />

0 ∣<br />

(p − 1)!<br />

∣<br />

which clearly converges to 0. This proves the claim.<br />

The next thing to consider is the term on the end in (6.5),<br />

n∑<br />

m∑ n∑<br />

K f (j) (0) + c f (j) (β i ) (6.6)<br />

j=0<br />

i=1 j=0<br />

The idea is to show that for large enough p it is always an integer. When this is done, it<br />

can’t happen that K + c ∑ m<br />

i=1 eβ i = 0 because if this were so, you would have a very small<br />

number equal to an integer. Now<br />

⎛<br />

⎞p<br />

Q(x)<br />

v (m−1)p ⎜<br />

{ }} {<br />

⎟<br />

⎝v (x − β 1 )(x − β 2 ) ···(x − β m ) ⎠ x p−1<br />

f (x) =<br />

(p − 1)!<br />

= vmp ((x − β 1 )(x − β 2 ) ···(x − β m )) p x p−1<br />

(p − 1)!<br />

(6.7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!