06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

428 APPLICATIONS TO DIFFERENTIAL EQUATIONS<br />

Recall r 0 (t) ≡ 0andr 1 (t) =e (−1+i)t . Then<br />

r ′ 2 =(−1 − i) r 2 + e (−1+i)t ,r 2 (0) = 0<br />

and so<br />

r 2 (t) = e(−1+i)t − e (−1−i)t<br />

= e −t sin (t)<br />

2i<br />

Putzer’s method yields the fundamental matrix as<br />

( )<br />

( )<br />

Φ(t) = e (−1+i)t 1 0<br />

+ e −t 1 − i 1<br />

sin (t)<br />

0 1<br />

−2 −1 − i<br />

( )<br />

e<br />

=<br />

−t (cos (t)+sin(t)) e −t sin t<br />

−2e −t sin t e −t (cos (t) − sin (t))<br />

From variation of constants formula the desired solution is<br />

( ) ( )( )<br />

x1<br />

e<br />

(t) =<br />

−t (cos (t)+sin(t)) e −t sin t<br />

1<br />

x 2 −2e −t sin t e −t (cos (t) − sin (t)) 0<br />

∫ t<br />

( )(<br />

)<br />

e<br />

+<br />

−s (cos (s)+sin(s)) e −s sin s<br />

0<br />

0<br />

−2e −s sin s e −s (cos (s) − sin (s)) cos (t − s)<br />

( )<br />

e<br />

=<br />

−t ∫ t<br />

(<br />

)<br />

(cos (t)+sin(t))<br />

e<br />

−2e −t +<br />

−s sin (s) cos (t − s)<br />

sin t<br />

0<br />

e −s ds<br />

(cos s − sin s) cos (t − s)<br />

( ) (<br />

e<br />

=<br />

−t (cos (t)+sin(t)) −<br />

1<br />

−2e −t + 5 (cos t) e−t − 3 5 e−t sin t + 1 5 cos t + 2 5 sin t )<br />

sin t<br />

− 2 5 (cos t) e−t + 4 5 e−t sin t + 2 5 cos t − 1 5 sin t ( 4<br />

= 5 (cos t) e−t + 2 5 e−t sin t + 1 5 cos t + 2 5 sin t )<br />

− 6 5 e−t sin t − 2 5 (cos t) e−t + 2 5 cos t − 1 5 sin t<br />

Thus y (t) =x 1 (t) = 4 5 (cos t) e−t + 2 5 e−t sin t + 1 5 cos t + 2 5<br />

sin t.<br />

C.5 Geometric <strong>Theory</strong> Of Autonomous Systems<br />

Here a sufficient condition is given for stability of a first order system. First of all, here is<br />

a fundamental estimate for the entries of a fundamental matrix.<br />

Lemma C.5.1 Let the functions, r k be given in the statement of Theorem C.4.8 and suppose<br />

that A is an n × n matrix whose eigenvalues are {λ 1 , ··· ,λ n } . Suppose that these<br />

eigenvalues are ordered such that<br />

Re (λ 1 ) ≤ Re (λ 2 ) ≤···≤Re (λ n ) < 0.<br />

Then if 0 > −δ > Re (λ n ) is given, there exists a constant, C such that for each k =<br />

0, 1, ··· ,n,<br />

|r k (t)| ≤Ce −δt (3.29)<br />

for all t>0.<br />

Proof: This is obvious for r 0 (t) because it is identically equal to 0. From the definition<br />

of the r k ,r ′ 1 = λ 1 r 1 ,r 1 (0) = 1 and so r 1 (t) =e λ1t which implies<br />

|r 1 (t)| ≤e Re(λ 1)t .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!