06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

64 MATRICES AND LINEAR TRANSFORMATIONS<br />

showing that Q (t) is a linear transformation. Also, Q (t) preserves all distances because,<br />

since the vectors, i (t) , j (t) , k (t) form an orthonormal set,<br />

|Q (t) u| =<br />

( 3∑<br />

i=1<br />

(<br />

u<br />

i ) ) 1/2<br />

2<br />

= |u| .<br />

Lemma 2.6.3 Suppose Q (t) is a real, differentiable n×n matrix which preserves distances.<br />

Then Q (t) Q (t) T = Q (t) T Q (t) =I. Also, if u (t) ≡ Q (t) u, then there exists a vector, Ω (t)<br />

such that<br />

u ′ (t) =Ω (t) × u (t) .<br />

The symbol × refers to the cross product.<br />

(<br />

Proof: Recall that (z · w) = 1 4<br />

|z + w| 2 −|z − w| 2) . Therefore,<br />

(Q (t) u·Q (t) w) = 1 (|Q (t)(u + w)| 2 −|Q (t)(u − w)| 2)<br />

4<br />

= 1 (|u + w| 2 −|u − w| 2)<br />

4<br />

= (u · w) .<br />

This implies (<br />

)<br />

Q (t) T Q (t) u · w =(u · w)<br />

for all u, w. Therefore, Q (t) T Q (t) u = u and so Q (t) T Q (t) =Q (t) Q (t) T = I. This proves<br />

the first part of the lemma.<br />

It follows from the product rule, Lemma 2.6.2 that<br />

Q ′ (t) Q (t) T + Q (t) Q ′ (t) T =0<br />

and so<br />

(<br />

)<br />

Q ′ (t) Q (t) T = − Q ′ (t) Q (t) T T<br />

. (2.26)<br />

From the definition, Q (t) u = u (t) ,<br />

=u<br />

{ }} {<br />

u ′ (t) =Q ′ (t) u =Q ′ (t) Q (t) T u (t).<br />

Then writing the matrix of Q ′ (t) Q (t) T with respect to fixed in space orthonormal basis<br />

vectors, i ∗ , j ∗ , k ∗ , where these are the usual basis vectors for R 3 , it follows from (2.26) that<br />

the matrix of Q ′ (t) Q (t) T is of the form<br />

⎛<br />

0 −ω 3 (t) ω 2 (t)<br />

⎞<br />

⎝ ω 3 (t) 0 −ω 1 (t) ⎠<br />

−ω 2 (t) ω 1 (t) 0<br />

for some time dependent scalars ω i . Therefore,<br />

⎛ ⎞<br />

⎝ u1<br />

′ ⎛<br />

0 −ω 3 (t) ω 2 (t)<br />

u 2 ⎠ (t)= ⎝ ω 3 (t) 0 −ω 1 (t)<br />

u 3<br />

−ω 2 (t) ω 1 (t) 0<br />

⎞ ⎛<br />

⎠<br />

⎝ u1<br />

u 2<br />

u 3<br />

⎞<br />

⎠ (t)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!