06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

56 MATRICES AND LINEAR TRANSFORMATIONS<br />

where b is chosen to satisfy the equation<br />

a 1 b +<br />

n∑<br />

a k =0<br />

k=2<br />

Suppose now that the theorem is true for any m × n matrix with n>mand consider an<br />

(m × 1) × n matrix A where n>m+1. If the first column of A is 0, then you could let<br />

x = e 1 as above. If the first column is not the zero vector, then by doing row operations,<br />

the equation Ax = 0 can be reduced to the equivalent system<br />

where A 1 is of the form<br />

A 1 x = 0<br />

(<br />

1 a<br />

T<br />

A 1 =<br />

0 B<br />

where B is an m × (n − 1) matrix. Since n>m+1, it follows that (n − 1) >mand so<br />

by induction, there exists a nonzero vector y ∈ F n−1 such that By = 0. Then consider the<br />

vector<br />

( ) b<br />

x =<br />

y<br />

⎛ ⎞<br />

b T 1<br />

A 1 x has for its top entry the expression b + a T ⎜<br />

y. Letting B = . ⎟<br />

⎝<br />

⎠ , the i th entry of<br />

A 1 x for i>1 is of the form b T i y =0. Thusifb is chosen to satisfy the equation b+aT y =0,<br />

then A 1 x = 0.<br />

)<br />

b T m<br />

2.4 Subspaces <strong>And</strong> Spans<br />

Definition 2.4.1 Let {x 1 , ··· , x p } be vectors in F n . A linear combination is any expression<br />

of the form<br />

p∑<br />

c i x i<br />

i=1<br />

where the c i are scalars. The set of all linear combinations of these vectors is called<br />

span (x 1 , ··· , x n ) . If V ⊆ F n , then V is called a subspace if whenever α, β are scalars<br />

and u and v are vectors of V, it follows αu + βv ∈ V . That is, it is “closed under the<br />

algebraic operations of vector addition and scalar multiplication”. A linear combination<br />

of vectors is said to be trivial if all the scalars in the linear combination equal zero. A set<br />

of vectors is said to be linearly independent if the only linear combination of these vectors<br />

which equals the zero vector is the trivial linear combination. Thus {x 1 , ··· , x n } is called<br />

linearly independent if whenever<br />

p∑<br />

c k x k = 0<br />

k=1<br />

it follows that all the scalars c k equal zero. A set of vectors, {x 1 , ··· , x p } , is called linearly<br />

dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if<br />

there exist scalars c i ,i=1, ··· ,n, not all zero such that ∑ p<br />

k=1 c kx k = 0.<br />

Proposition 2.4.2 Let V ⊆ F n . Then V is a subspace if and only if it is a vector space<br />

itself with respect to the same operations of scalar multiplication and vector addition.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!