06.09.2021 Views

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

Linear Algebra, Theory And Applications, 2012a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

148 LINEAR PROGRAMMING<br />

Now to maximize, you try to get rid of the negative entries in the bottom left row. The<br />

most negative entry is the -1 in the fifth column. The pivot is the 1 in the third row of this<br />

column. The new tableau is<br />

⎛<br />

1<br />

0 1 1<br />

3<br />

0 0 − 2 ⎞<br />

1<br />

5<br />

3 3<br />

0 0<br />

3<br />

1<br />

1<br />

1 0 0<br />

3<br />

0 0<br />

3<br />

− 2 8<br />

3<br />

0 0 3<br />

0 0 1 −2 1 0 −1 0 0 0 1<br />

⎜ 0 0 0 − 1 3<br />

0 0 − 1 3<br />

− 1 1<br />

3<br />

1 0 .<br />

3 ⎟<br />

⎝<br />

5<br />

0 0 1<br />

3<br />

0 1 − 1 3<br />

− 7 31<br />

3<br />

0 0 ⎠<br />

3<br />

0 0 1 − 4 3<br />

0 0 − 4 3<br />

− 1 31<br />

3<br />

0 1<br />

3<br />

Consider the fourth column. The pivot is the top 1/3. The new tableau is<br />

⎛<br />

⎞<br />

0 3 3 1 0 0 −2 1 0 0 5<br />

1 −1 −1 0 0 0 1 −1 0 0 1<br />

0 6 7 0 1 0 −5 2 0 0 11<br />

⎜ 0 1 1 0 0 0 −1 0 1 0 2<br />

⎟<br />

⎝ 0 −5 −4 0 0 1 3 −4 0 0 2 ⎠<br />

0 4 5 0 0 0 −4 1 0 1 17<br />

There is still a negative in the bottom, the -4. The pivot in that column is the 3. The<br />

algorithm yields<br />

⎛<br />

0 − 1 1<br />

2<br />

3 3<br />

1 0<br />

3<br />

0 − 5 ⎞<br />

19<br />

3<br />

0 0<br />

3<br />

2 1<br />

1<br />

3 3<br />

0 0 − 1 1<br />

1<br />

3<br />

0<br />

3<br />

0 0 3<br />

0 − 7 1<br />

5<br />

3 3<br />

0 1<br />

3<br />

0 − 14 43<br />

3<br />

0 0 3<br />

⎜ 0 − 2 3<br />

− 1 1<br />

3<br />

0 0<br />

3<br />

0 − 4 8<br />

3<br />

1 0 3 ⎟<br />

⎝ 0 − 5 3<br />

− 4 1<br />

3<br />

0 0<br />

3<br />

1 − 4 2<br />

3<br />

0 0 ⎠<br />

3<br />

0 − 8 3<br />

− 1 4<br />

3<br />

0 0<br />

3<br />

0 − 13 59<br />

3<br />

0 1<br />

3<br />

Note how z keeps getting larger. Consider the column having the −13/3 in it. The pivot is<br />

the single positive entry, 1/3. The next tableau is<br />

⎛<br />

⎞<br />

5 3 2 1 0 −1 0 0 0 0 8<br />

3 2 1 0 0 −1 0 1 0 0 1<br />

14 7 5 0 1 −3 0 0 0 0 19<br />

⎜ 4 2 1 0 0 −1 0 0 1 0 4<br />

.<br />

⎟<br />

⎝ 4 1 0 0 0 −1 1 0 0 0 2 ⎠<br />

13 6 4 0 0 −3 0 0 0 1 24<br />

There is a column consisting of all negative entries. There is therefore, no maximum. Note<br />

also how there is no way to pick the pivot in that column.<br />

Example 6.3.4 Minimize z = x 1 − 3x 2 + x 3 subject to the constraints x 1 + x 2 + x 3 ≤<br />

10,x 1 + x 2 + x 3 ≥ 2, x 1 + x 2 +3x 3 ≤ 8 and x 1 +2x 2 + x 3 ≤ 7 with all variables nonnegative.<br />

There exists an answer because the region defined by the constraints is closed and<br />

bounded. Adding in slack variables you get the following augmented matrix corresponding<br />

to the constraints. ⎛<br />

⎞<br />

1 1 1 1 0 0 0 10<br />

⎜ 1 1 1 0 −1 0 0 2<br />

⎟<br />

⎝ 1 1 3 0 0 1 0 8 ⎠<br />

1 2 1 0 0 0 1 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!