24.06.2016 Views

Sfogliabile_AeL_n3_GIUGNO_2016

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Foundry<br />

Figure 4:<br />

micro-graphic<br />

image of the<br />

section of a<br />

structural cast in<br />

an area in contact<br />

with the core<br />

Figura 4:<br />

micrografia di una<br />

sezione di un getto<br />

strutturale in una<br />

zona a contatto<br />

con l’anima<br />

Casts with better metallurgical properties<br />

The last advantage is the better metallurgical structure of casts<br />

in the areas that are in contact with the core. This aspect is determined<br />

by the behaviour of the core when it comes in contact<br />

with the liquid aluminium, since with an organic core the<br />

capablity of absorbing heat is gradually reduced during cooling.<br />

This phenomenon is shown by the graph in Figure 3, where<br />

the behaviour of the two cores is compared. The curves (left<br />

side) show how the organic core sand binder heats up instantly<br />

reaching a peak of roughly 480°C, a temperature where the<br />

capability of absorbing heat decreases. On the other hand the<br />

inorganic core absorbs much more heat in a longer time interval.<br />

The curve showing the speed at which the alloy solidifies<br />

confirms this trend: in the interval during which the liquid<br />

metalsolidifies,theinorganiccoresandbinderprovestobe<br />

still relatively cool, unlike the shell moulding core. The last consideration<br />

concerns the mould’s temperature: comparing the<br />

two graphics it can be seen that in the case of inorganic cores<br />

temperature is on average lower, a phenomenon that may still<br />

be associated to the high thermal capacity. The consequence<br />

isanincreaseofthespeedofcooling,thatcorrespondstoa<br />

veryfinesolidifyingmicro-structure,anindexofveryhigh<br />

mechanical performances. As an example, Figure 4 shows a<br />

micro-graphic rendering of the section of an EN-AC-42100<br />

structural cast obtained in an area in contact with the core. As<br />

may be observed, the micro-structure is particularly fine (average<br />

SDAS 23 µm); this implies high mechanical performanc-<br />

es. – Rp0.2=248MPa; Rm=305MPa; A%=12% – that may be compared<br />

to those in areas not in contact with the core.<br />

Limits to the application<br />

In consideration of the above statements, the use of inorganic<br />

core sand binders implies considerable advantages.<br />

There are, however, some limitations of this application: for<br />

instance the cores may not be emptied like shell moulding<br />

cores since the “lattice” of the binder forms on account of<br />

aflowofhotairina“gassing”processthatresemblesthe<br />

cold box method. The second disadvantage concerns the<br />

sand’s regeneration: today there are mechanical cycles of<br />

removalofthebinderfromthesandparticlesinsomepilot<br />

plants, whose efficiency still needs to be improved. The last<br />

aspect that should be taken into consideration is the drying<br />

of the cores after moulding as they have been proved<br />

to be sensitive to humidity, both in the sense of atmospherichumidityandofresidualhumidityduetothedryingprocess<br />

itself. The hot air introduced during the “gassing” process<br />

is meant to remove water completely form the mixture<br />

that serves as a solvent for the binder. Sometimes part of<br />

the water may however remain trapped in the core’s solid<br />

parts if correct process parameters are not used. Finally, in<br />

time residual humidity tends to migrate towards dry areas,<br />

makingthewholecoremorefragileForthisreasonstocking<br />

the cores in warehouses is also a critical issue , especially if<br />

temperature and atmospheric humidity are high. ❚<br />

I limiti d’applicazione<br />

Allalucediquantodettoinprecedenza,l’utilizzodelleanimeinorganicheportadeivantagginontrascurabili.Esistonoperòalcunilimitiapplicativi:adesempio,le<br />

animenonpossonoesseresvuotatecomequelleinshell<br />

moulding in quanto la “reticolazione” del legante avviene<br />

tramite passaggio di aria calda in<br />

un processo di “gasaggio” simile al<br />

cold box. Il secondo svantaggio è relativo<br />

alla rigenerazione della sabbia:adoggiesistonodeiciclimeccanici<br />

di rimozione del legante dalle<br />

particelle di sabbia in alcuni impianti<br />

pilota, la cui efficacia è ancora da<br />

migliorare. L’ultimo aspetto da tenere<br />

in considerazione è l’asciugatura<br />

delle anime dopo formatura in<br />

quanto risultano sensibili all’umidità,intesasiacomeumiditàatmosferica<br />

che come residuo del processo<br />

di asciugatura stesso. Infatti, l’aria<br />

calda introdotta durante la fase di<br />

“gasaggio”hailcompitodirimuovere<br />

completamente dall’impasto l’acquachefunge<br />

da solvente dellegante.<br />

Può però succedere che parte<br />

dell’acqua resti intrappolata nelle<br />

zone massicce dell’anima se non si<br />

utilizzano dei parametri di processocorretti.Infine,conilpassaredeltempol’umiditàresidua<br />

tende a migrare verso le zone asciutte, infragilendo<br />

l’intera anima.<br />

Per questo motivo risulta essere critica anche la stoccaggio<br />

a magazzino delle anime, soprattutto se le temperature<br />

e l’umidità atmosferica sono elevate. ❚<br />

76 -<br />

.com<br />

PubliTec

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!