04.06.2020 Views

Il Giornale dei Biologi - N. 6

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SCIENZE<br />

Allo stato attuale, lo sviluppo di terapie ottimizzate alla riduzione<br />

degli effetti e <strong>dei</strong> sintomi della malattia si è concentrato principalmente<br />

sulle prime intuizioni <strong>dei</strong> meccanismi molecolari e sui<br />

percorsi coinvolti nell’AD. Da decenni la disputa su quale delle<br />

alterazioni, le placche di amiloide extracellulare o la degenerazione<br />

neurofibrillare costituisse il primum movens della malattia divide<br />

i ricercatori, che si sono focalizzati principalmente su queste due<br />

opzioni. La costante scoperta di nuovi aspetti genetici, le ipotesi di<br />

ulteriori processi che mettano in relazione i due contrassegni istopatologici,<br />

l’evidenza di possibili combinazione di più fattori genetici<br />

ed acquisiti, stanno fortunatamente condizionando lo sviluppo<br />

di nuovi quadri degenerativi e meccanismi molecolari alternativi,<br />

aprendo le porte a nuove macro-aree di studio.<br />

Man mano che la comprensione <strong>dei</strong> geni coinvolti nella malattia<br />

evolve, la capacità di identificare individui a rischio e di soggetti<br />

che potrebbero beneficiare di un trattamento più specifico e di una<br />

prevenzione precoce aumenta. Anche se c’è ancora molta strada<br />

da fare nel campo dell’AD prima che venga chiarito in modo netto<br />

e preciso il quadro patologico, c’è motivo di cauto ottimismo<br />

nella continua scoperta di nuovi protagonisti coinvolti nell’AD e<br />

nell’impatto che la profilazione genetica molecolare può avere nella<br />

decifrazione della biochimica di una patologia così complessa,<br />

nella sua previsione, prevenzione e cura.<br />

Bibliografia<br />

[1] P. M., B. R., A. E., W. A., R. W., and F. C.P., “The global<br />

prevalence of dementia: A systematic review and metaanalysis,”<br />

Alzheimer’s and Dementia. 2013.<br />

[2] M. Gatz et al., “Role of genes and environments for explaining<br />

Alzheimer disease,” Arch. Gen. Psychiatry, 2006.<br />

[3] C. Haass et al., “Amyloid β-peptide is produced by cultured<br />

cells during normal metabolism,” Nature, 1992.<br />

[4] A. Goate et al., “Segregation of a missense mutation in the<br />

amyloid precursor protein gene with familial Alzheimer’s disease,”<br />

Nature, 1991.<br />

[5] L. Bertram, “Alzheimer’s disease: one disorder, too many<br />

genes?,” Hum. Mol. Genet., 2004.<br />

[6] M. Cruts, J. Theuns, and C. Van Broeckhoven, “Locus-specific<br />

mutation databases for neurodegenerative brain diseases,”<br />

Hum. Mutat., 2012.<br />

[7] K. Sleegers et al., “APP duplication is sufficient to cause<br />

early onset Alzheimer’s dementia with cerebral amyloid angiopathy,”<br />

Brain, 2006.<br />

[8] M. Tabaton and E. Tamagno, “The molecular link between<br />

β- and γ-secretase activity on the amyloid β precursor protein,”<br />

Cellular and Molecular Life Sciences. 2007.<br />

[9] P. H. St. George-Hyslop et al., “The genetic defect causing<br />

familial Alzheimer’s disease maps on chromosome 21,” Science<br />

(80-. )., 1987.<br />

[10] C. Van Broeckhoven et al., “Mapping of a gene predisposing<br />

to early-onset Alzheimer’s disease to chromosome<br />

14q24.3,” Nat. Genet., 1992.<br />

[11] R. Sherrington et al., “Alzheimer’s disease associated with<br />

mutations in presenilin 2 is rare and variably penetrant,” Hum.<br />

Mol. Genet., 1996.<br />

[12] M. Cruts and C. Van Broeckhoven, “Presenilin mutations<br />

in Alzheimer’s disease,” Hum. Mutat., 1998.<br />

[13] Y. Huang, “Roles of apolipoprotein E4 (ApoE4) in the pathogenesis<br />

of Alzheimer’s disease: Lessons from ApoE mouse<br />

models,” in Biochemical Society Transactions, 2011.<br />

[14] E. H. Corder et al., “Protective effect of apolipoprotein<br />

E type 2 allele for late onset Alzheimer disease,” Nat. Genet.,<br />

1994.<br />

[15] P. Hauser and R. Ryan, “Impact of Apolipoprotein E on<br />

Alzheimer’s Disease,” Curr. Alzheimer Res., 2013.<br />

[16] L. A. Farrer et al., “Effects of age, sex, and ethnicity on the<br />

association between apolipoprotein E genotype and Alzheimer<br />

disease: A meta-analysis,” Journal of the American Medical Association.<br />

1997.<br />

[17] E. H. Corder et al., “Gene dose of apolipoprotein E type 4<br />

allele and the risk of Alzheimer’s disease in late onset families,”<br />

Science (80-. )., 1993.<br />

[18] M. A. Pericak-Vance et al., “Linkage studies in familial Alzheimer<br />

disease: Evidence for chromosome 19 linkage,” Am. J.<br />

Hum. Genet., 1991.<br />

[19] J. C. Lambert et al., “Meta-analysis of 74,046 individuals<br />

identifies 11 new susceptibility loci for Alzheimer’s disease,”<br />

Nat. Genet., 2013.<br />

[20] D. Harold et al., “Genome-wide association study identifies<br />

variants at CLU and PICALM associated with Alzheimer’s<br />

disease,” Nat. Genet., 2009.<br />

[21] S. Seshadri et al., “Genome-wide analysis of genetic loci<br />

associated with Alzheimer disease,” JAMA - J. Am. Med. Assoc.,<br />

2010.<br />

[22] E. Rogaeva et al., “The neuronal sortilin-related receptor<br />

SORL1 is genetically associated with Alzheimer disease,” Nat.<br />

Genet., 2007.<br />

[23] J. C. Howell et al., “Race modifies the relationship between<br />

cognition and Alzheimer’s disease cerebrospinal fluid biomarkers,”<br />

Alzheimer’s Res. Ther., 2017.<br />

[24] I. Skoog and D. Gustafson, “Update on hypertension and<br />

Alzheimer’s disease,” Neurol. Res., 2006.<br />

[25] J. L. Podcasy and C. N. Epperson, “Considering sex and<br />

gender in Alzheimer disease and other dementias,” Dialogues<br />

Clin. Neurosci., 2016.<br />

[26] R. Li and M. Singh, “Sex differences in cognitive impairment<br />

and Alzheimer’s disease,” Frontiers in Neuroendocrinology.<br />

2014.<br />

[27] D. Prokopenko et al., “Identification of Novel Alzheimer’s<br />

Disease Loci Using Sex-Specific Family-Based Association<br />

Analysis of Whole-Genome Sequence Data,” Sci. Rep., 2020.<br />

[28] G. A. Rosenberg, “Matrix metalloproteinases and their<br />

multiple roles in neurodegenerative diseases,” The Lancet Neurology.<br />

2009.<br />

[29] R. Du et al., “Integrative mouse and human studies implicate<br />

ANGPT1 and ZBTB7C as susceptibility genes to ischemic<br />

injury,” Stroke, 2015.<br />

[30] A. P. Jackson et al., “Identification of microcephalin, a<br />

protein implicated in determining the size of the human brain,”<br />

Am. J. Hum. Genet., 2002.<br />

[31] J. Kang et al., “The precursor of Alzheimer’s disease<br />

amyloid A4 protein resembles a cell-surface receptor,” Nature,<br />

1987.<br />

<strong>Il</strong> <strong>Giornale</strong> <strong>dei</strong> <strong>Biologi</strong> | Maggio 2020<br />

89

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!