23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tant. The first one is<br />

(u k ′u k − v k ′v k ) 2 = 1 4<br />

{(<br />

1 +<br />

)<br />

ξ k ′<br />

ξ<br />

√<br />

(1 + √ k<br />

ξ<br />

2<br />

k ′ + ∆ 2 k ξ<br />

2 ′ k<br />

+ ∆ 2 k<br />

ξ k ′ ξ<br />

− 2√ √ k<br />

+<br />

ξ<br />

2<br />

k ′ + ∆ 2 k ξ<br />

2 ′ k<br />

+ ∆ 2 k<br />

= 1 (<br />

1 + ξ kξ k ′<br />

− ∆ )<br />

k∆ k ′<br />

2 E k E k ′ E k E k ′<br />

(<br />

1 −<br />

)<br />

)<br />

ξ k ′<br />

ξ<br />

√<br />

(1 − √ k<br />

ξ<br />

2<br />

k ′ + ∆ 2 k ξ<br />

2 ′ k<br />

+ ∆ 2 k<br />

)}<br />

(10.99)<br />

with E k = √ ξk 2 + ∆2 k<br />

. If the matrix elements B and the normal-state density <strong>of</strong> states are even functions <strong>of</strong> the<br />

normal-state energy relative to the Fermi energy, ξ k , the second term, which is odd in ξ k and ξ k ′, will drop out<br />

under the sum ∑ kk<br />

. Hence, this term is usually omitted, giving the coherence factor<br />

′<br />

F − (k, k ′ ) := 1 (<br />

1 − ∆ )<br />

k∆ k ′<br />

(10.100)<br />

2 E k E k ′<br />

relevant for quasiparticle scattering in ultrasound experiments.<br />

factor<br />

(<br />

σ 2 (u k ′v k + v k ′u k ) 2 = 1 + ∆ k∆ k ′<br />

E k E k ′<br />

}{{}<br />

= 1<br />

Analogously, we obtain the second coherence<br />

)<br />

=: F + (k, k ′ ) (10.101)<br />

for quasiparticle creation and annihilation.<br />

We can gain insight into the temperature dependence <strong>of</strong> ultrasound attenuation by making the rather crude<br />

approximation that the matrix element B is independent <strong>of</strong> k, k ′ and thus <strong>of</strong> energy. Furthermore, typical<br />

ultrasound frequencies Ω satisfy Ω ≪ ∆ 0 and Ω ≪ k B T . Then only scattering <strong>of</strong> quasiparticles by phonons<br />

but not their creation is important since the phonon energy is not sufficient for quasiparticle creation.<br />

The rate <strong>of</strong> ultrasound absorption (attenuation) can be written in a plausible form analogous to the current<br />

in the previous section:<br />

where now<br />

α s ∝<br />

∫ ∞<br />

−∞<br />

dω D s (|ω|) D s (|ω + Ω|) |B| 2 F − (ω, ω + Ω) [n F (ω) − n F (ω + Ω)] , (10.102)<br />

F − (ω, ω ′ ) = 1 2<br />

With the approximations introduced above we get<br />

α s ∝ D 2 n(E F ) |B| 2<br />

∫∞<br />

−∞<br />

( )<br />

1 − ∆2 0<br />

|ω| |ω ′ . (10.103)<br />

|<br />

dω D (<br />

s(|ω|) D s (|ω + Ω|) 1 ∆ 2 )<br />

0<br />

1 −<br />

[n F (ω) − n F (ω + Ω)] . (10.104)<br />

D n (E F ) D n (E F ) 2 |ω| |ω + Ω|<br />

The normal-state attentuation rate is found by letting ∆ 0 → 0:<br />

⇒<br />

α n ∝ D 2 n(E F ) |B| 2<br />

α s<br />

α n<br />

= 1 Ω<br />

∫ ∞<br />

−∞<br />

∫∞<br />

−∞<br />

dω n F (ω) − n F (ω + Ω)<br />

2<br />

dω D s(|ω|) D s (|ω + Ω|) |ω| |ω + Ω| − ∆ 2 0<br />

D n (E F ) D n (E F ) |ω| |ω + Ω|<br />

= 1 2 D2 n(E F ) |B| 2 Ω (10.105)<br />

[n F (ω) − n F (ω + Ω)] . (10.106)<br />

103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!