23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a restriction <strong>of</strong> our variational ansatz. Then we obtain<br />

⟨ψ BCS |H| ψ BCS ⟩ = ∑ kσ<br />

+ 1 N<br />

ξ k ⟨0| ∏ q<br />

∑<br />

kk ′ V kk ′ ⟨0| ∏ q<br />

(<br />

u<br />

∗<br />

q + v ∗ q c −q,↓ c q↑<br />

)<br />

c<br />

†<br />

kσ c kσ<br />

∏ (<br />

)<br />

u q ′ + v q ′ c † q ′ ↑ c† −q ′ ,↓<br />

|0⟩<br />

q ′<br />

(<br />

u<br />

∗<br />

q + v ∗ q c −q,↓ c q↑<br />

)<br />

c<br />

†<br />

k↑ c† −k,↓ c −k ′ ↓c k′ ↑<br />

∏ (<br />

)<br />

u q ′ + v q ′ c † q ′ ↑ c† −q ′ ,↓<br />

|0⟩<br />

q ′<br />

= ∑ ξ k ⟨0| |v k | 2 c −k,↓ c k↑ c † k↑ c k↑c † k↑ c† −k,↓ |0⟩ + ∑ ξ k ⟨0| |v −k | 2 c k↓ c −k,↑ c † k↓ c k↓c † −k,↑ c† k↓ |0⟩<br />

k<br />

k<br />

+ 1 ∑<br />

V kk ′ ⟨0| v<br />

N<br />

ku ∗ ∗ k ′u kv k ′ c −k,↓ c k↑ c † k↑ c† −k,↓ c −k ′ ,↓c k′ ↑c † k ′ ↑ c† −k ′ ,↓ |0⟩<br />

kk ′<br />

= ∑ 2ξ k |v k | 2 + 1 ∑<br />

V kk ′ v<br />

N<br />

ku ∗ k u ∗ k ′v k ′ =: E BCS. (9.20)<br />

k<br />

kk ′<br />

This energy should be minimized with respect to the u k , v k . For E BCS to be real, the phases <strong>of</strong> u k and v k must<br />

be the same. But since E BCS is invariant under<br />

u k → u k e iφ k<br />

, v k → v k e iφ k<br />

, (9.21)<br />

we can choose all u k , v k real. The constraint from normalization then reads u 2 k + v2 k<br />

= 1 and we can parametrize<br />

the coefficients by<br />

u k = cos θ k , v k = sin θ k . (9.22)<br />

Then<br />

We obtain the minimum from<br />

∂E BCS<br />

∂θ q<br />

We replace q by k and parametrize θ k by<br />

E BCS = ∑ 2ξ k sin 2 θ k + 1 ∑<br />

V kk ′ sin θ k cos θ k sin θ k ′ cos θ k ′<br />

N<br />

k<br />

kk ′<br />

= ∑ ξ k (1 − cos 2θ k ) + 1 ∑ V kk ′<br />

sin 2θ k sin 2θ k ′. (9.23)<br />

N 4<br />

k<br />

kk ′<br />

= 2ξ q sin 2θ q + 1 ∑ V qk ′<br />

cos 2θ q sin 2θ k ′ + 1 ∑<br />

N 2<br />

N<br />

k ′ k<br />

= 2ξ q sin 2θ q + 1 ∑<br />

V qk ′ cos 2θ q sin 2θ k ′<br />

N<br />

k ′<br />

V kq<br />

2 sin 2θ k cos 2θ q<br />

!<br />

= 0. (9.24)<br />

sin 2θ k =:<br />

∆ k<br />

√<br />

ξ<br />

2<br />

k<br />

+ ∆ 2 k<br />

(9.25)<br />

and write<br />

cos 2θ k =<br />

ξ<br />

√ k<br />

. (9.26)<br />

ξ<br />

2<br />

k<br />

+ ∆ 2 k<br />

The last equality is only determined by the previous one up to the sign. We could convince ourselves that the<br />

other possible choice does not lead to a lower E BCS . Equation (9.24) now becomes<br />

⇒<br />

2<br />

ξ k ∆<br />

√ k<br />

+ 1 ∑<br />

ξ<br />

2<br />

k<br />

+ ∆ 2 N<br />

k<br />

∑<br />

∆ k = − 1 N<br />

k ′ V kk ′<br />

k ′ V kk ′<br />

ξ k ∆ k ′<br />

√<br />

ξ<br />

2<br />

k<br />

+ ∆ 2 k√<br />

ξ<br />

2<br />

k ′ + ∆ 2 k ′ = 0 (9.27)<br />

∆ k ′<br />

2 √ ξ 2 k ′ + ∆ 2 k ′ . (9.28)<br />

86

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!