23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Thus the energy is<br />

∫<br />

E 2 = 2E core + d 2 r 1 2 E · E<br />

= 2E core − 1 2 2γ α β<br />

∫<br />

= 2E core − γ α ∫∞<br />

β 2<br />

−∞<br />

d 2 r<br />

dx<br />

∫ ∞<br />

0<br />

(<br />

)<br />

|r + R/2| 2 (r − R/2) − |r − R/2| 2 2<br />

(r + R/2)<br />

|r − R/2| 2 |r + R/2| 2<br />

dy<br />

× |r + R/2|4 |r − R/2| 2 + |r − R/2| 4 |r + R/2| 2 − 2 |r + R/2| 2 |r − R/2| 2 (r 2 − R 2 /4)<br />

|r − R/2| 4 |r + R/2| 4 . (7.38)<br />

We introduce elliptic coordinates σ, τ according to<br />

x = R 2<br />

στ, (7.39)<br />

y = R 2<br />

√<br />

σ2 − 1 √ 1 − τ 2 , (7.40)<br />

where σ ∈ [1, ∞[, τ ∈ [−1, 1]. Then<br />

E 2 = 2E core − 2γ α β<br />

( R<br />

2<br />

) 2 ∫<br />

dσ dτ<br />

σ 2 − τ 2<br />

√<br />

σ2 − 1 √ 1 − τ 2<br />

×<br />

( R<br />

2<br />

) 4 ( )<br />

(σ + τ)<br />

4 R 2<br />

(σ − τ) 2 + ( )<br />

R 4 ( )<br />

(σ − τ)<br />

4 R 2<br />

(σ + τ)<br />

2<br />

− 2 ( R<br />

2<br />

2<br />

( R<br />

2<br />

) 2<br />

(σ + τ)<br />

2 ( R<br />

2<br />

= 2E core − 2γ α ∫<br />

dσ dτ<br />

β<br />

= 2E core − 2γ α ∫<br />

dσ dτ<br />

β<br />

= 2E core − 8πγ α ∫<br />

dσ<br />

β<br />

) 4 ( )<br />

(σ − τ)<br />

4 R 4<br />

(σ + τ)<br />

4<br />

2<br />

2<br />

) 2<br />

(σ − τ)<br />

2 ( R<br />

2<br />

) 2<br />

(σ 2 τ 2 + (σ 2 − 1)(1 − τ 2 ) − 1)<br />

2<br />

1<br />

√<br />

σ2 − 1 √ (σ + τ) 2 + (σ − τ) 2 − 2(σ 2 + τ 2 − 2)<br />

1 − τ 2 σ 2 − τ 2<br />

1<br />

√<br />

σ2 − 1 √ 4<br />

1 − τ 2<br />

σ 2 − τ 2<br />

1<br />

σ(σ 2 − 1) . (7.41)<br />

We have to keep in mind that the integrals in real space have a lower cut<strong>of</strong>f r 0 . The minimum separation from<br />

the vortex at R ˆx/2 is (σ − 1)R/2. For this separation to equal r 0 , the lower cut<strong>of</strong>f for σ must be<br />

With this cut<strong>of</strong>f, we obtain<br />

which for R ≫ r 0 becomes<br />

E 2 = 2E core − 8πγ α β<br />

We absorb an R-independent constant into E core and finally obtain<br />

σ 0 = 1 + 2r 0<br />

R . (7.42)<br />

1<br />

2 ln (R + 2r 0) 2<br />

4r 0 (R + r 0 ) , (7.43)<br />

E 2 = 2E core − 4πγ α β ln R<br />

4r 0<br />

. (7.44)<br />

E 2 ≡ 2E core + V int (R) = 2E core − 4πγ α ln R . (7.45)<br />

β r<br />

} {{ } 0<br />

> 0<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!