23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Since Ω is small, we can expand the integral up to linear order in Ω,<br />

α s ∼<br />

1 =<br />

α n Ω<br />

∫ ∞<br />

−∞<br />

⎛<br />

∫<br />

= − ⎝<br />

[ ] 2 Ds (|ω|) ω 2 − ∆ 2 0<br />

dω<br />

D n (E F ) ω 2 (−Ω) ∂n F<br />

∂ω<br />

−∆ 0<br />

−∞<br />

= −n F (∞)<br />

} {{ }<br />

= 0<br />

= 2 n F (∆ 0 ) =<br />

⎞<br />

∫ ∞ [ ] 2<br />

+ ⎠<br />

|ω| ω 2 − ∆ 2 0<br />

dω √<br />

ω2 − ∆ 2 ω 2<br />

0<br />

∆ 0<br />

⎛<br />

−∆ ∫ 0<br />

∂n F<br />

∂ω = − ⎝<br />

−∞<br />

+<br />

⎞<br />

∫ ∞<br />

∆ 0<br />

⎠ dω ∂n F<br />

∂ω<br />

+ n F (∆ 0 ) − n F (−∆ 0 ) + n F (−∞) = n F (∆ 0 ) + 1 − n F (−∆ 0 )<br />

} {{ }<br />

= 1<br />

2<br />

e β∆ 0 + 1<br />

. (10.107)<br />

Inserting the BCS prediction for ∆ 0 (T ), we can plot α s /α n vs. temperature:<br />

α s<br />

α n<br />

1<br />

0 T c<br />

T<br />

We now turn to the relaxation <strong>of</strong> nuclear spins due to their coupling to the electrons. We note without derivation<br />

that the hyperfine interaction relevant for this preocess is odd in momentum if the electron spin is not changed<br />

but is even if the electron spin is flipped, i.e.,<br />

B −k,−σ,−k ′ ,−σ ′ = −σσ′ B k ′ σ ′ kσ (10.108)<br />

(recall σσ ′ = ±1). This is called case II. The perturbation Hamiltonian now reads<br />

H NMR = 1 2<br />

∑ ∑ (<br />

B k′ σ ′ kσ u ∗ k ′u kγ † k ′ σ<br />

γ ′ kσ + σu ∗ k ′v kγ † k ′ σ<br />

γ † ′ −k,−σ<br />

kk ′ σσ ′<br />

+ σ ′ v ∗ k ′u kγ −k′ ,−σ ′γ kσ + σσ ′ v ∗ k ′v kγ −k′ ,−σ ′γ† −k,−σ − σσ′ u ∗ ku k ′γ † −k,−σ γ −k ′ ,−σ ′<br />

+ σu ∗ kv k ′γ † −k,−σ γ† k ′ σ ′ + σ ′ v ∗ ku k ′γ kσ γ −k′ ,−σ ′ − v∗ kv k ′γ kσ γ † k ′ σ ′ )<br />

. (10.109)<br />

Assuming u k , v k , ∆ k ∈ R, we get, up to a constant,<br />

H NMR = 1 ∑ ∑ [<br />

)<br />

B k<br />

2<br />

′ σ ′ kσ (u k ′u k + v k ′v k )<br />

(γ † k ′ σ<br />

γ ′ kσ − σσ ′ γ † −k,−σ γ −k ′ ,−σ ′<br />

kk ′ σσ ′ (<br />

)]<br />

+ σ (u k ′v k − v k ′u k ) γ † k ′ σ<br />

γ † ′ −k,−σ − σσ′ γ −k ′ ,−σ ′γ kσ . (10.110)<br />

Compared to ultrasonic attenuation (case I) there is thus a change <strong>of</strong> sign in both coherence factors. An analogous<br />

derivation now gives the interchanged coherence factors<br />

F + (k, k ′ ) = 1 (<br />

1 + ∆ )<br />

k∆ k ′<br />

(10.111)<br />

2 E k E k ′<br />

for quasiparticle scattering and<br />

F − (k, k ′ ) = 1 2<br />

(<br />

1 − ∆ )<br />

k∆ k ′<br />

E k E k ′<br />

(10.112)<br />

104

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!