23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

∇ϕ − (q/c)A. Physics is invariant under the gauge transformation<br />

A → A + ∇χ, (6.59)<br />

Φ → Φ − 1 c<br />

˙χ, (6.60)<br />

ψ → e iqχ/c ψ, (6.61)<br />

where Φ is the scalar electric potential and χ(r, t) is an arbitrary scalar field. We make use <strong>of</strong> this gauge invariance<br />

by choosing<br />

χ = − c ϕ. (6.62)<br />

q<br />

Under this tranformation, we get<br />

A → A − c<br />

q ∇ϕ =: A′ , (6.63)<br />

ψ = (ψ 0 + δψ) e iϕ → (ψ 0 + δψ) e i(−ϕ+ϕ) = ψ 0 + δψ. (6.64)<br />

The macroscopic wave function becomes purely real (and positive). The Landau functional thus tranforms into<br />

∫ [<br />

F [δψ, A ′ ] → d 3 r − 2αδψ 2 + 1 ( ) ∗ <br />

2m ∗ i ∇δψ · <br />

i ∇δψ<br />

− α q 2<br />

β 2m ∗ c 2 (A′ ) ∗ · A ′ + 1<br />

]<br />

8π (∇ × A′ ) ∗ · (∇ × A ′ )<br />

(6.65)<br />

(note that ∇×A ′ = ∇×A). Thus the phase no longer appears in F ; it has been absorbed into the vector potential.<br />

Furthermore, dropping the prime,<br />

F [δψ, A] ∼ = ∑ [(−2α + 2 k 2 )<br />

2m ∗ δψkδψ ∗ k − α q 2<br />

β 2m ∗ c 2 A∗ k · A k + 1<br />

]<br />

8π (k × A k) ∗ · (k × A k )<br />

k<br />

= ∑ [(−2α + 2 k 2 )<br />

2m ∗ δψkδψ ∗ k − α q 2<br />

β 2m ∗ c 2 A∗ k · A k + k2<br />

8π A∗ k · A k − 1<br />

]<br />

8π (k · A∗ k)(k · A k ) . (6.66)<br />

k<br />

Obviously, amplitude fluctuations decouple from electromagnetic fluctuations and behave like for a neutral superfluid.<br />

We discuss the electromagnetic fluctuations further. The term proportional to α is due to <strong>superconductivity</strong>.<br />

Without it, we would have the free-field functional<br />

F free [A] = ∑ k<br />

1 [<br />

k 2 A ∗ k · A k − (k · A ∗<br />

8π<br />

k)(k · A k ) ] . (6.67)<br />

Decomposing A into longitudinal and transverse components,<br />

A k = ˆk(ˆk · A k ) + A k −<br />

} {{ }<br />

ˆk(ˆk · A k )<br />

} {{ }<br />

=: A ⊥ k<br />

=: A ∥ k<br />

(6.68)<br />

with ˆk := k/k, we obtain<br />

F free [A] = ∑ k<br />

= ∑ k<br />

1<br />

[<br />

(<br />

k 2 A ∥∗<br />

k<br />

8π · A∥ k + k2 A ⊥∗<br />

k · A ⊥ k −<br />

[✘✘✘✘ ✘<br />

1<br />

8π<br />

k 2 A ∥∗<br />

k<br />

· A∥ k + k2 A ⊥∗<br />

k<br />

k · A ∥∗<br />

k<br />

) ( )]<br />

k · A ∥ k<br />

· A ⊥ k − ✘ k 2 ✘✘✘<br />

A ∥∗ ✘ ]<br />

k · A∥ k<br />

= ∑ k<br />

1<br />

8π k2 A ⊥∗<br />

k · A ⊥ k . (6.69)<br />

Thus only the transverse components appear—only they are degrees <strong>of</strong> freedom <strong>of</strong> the free electromagnetic field.<br />

They do not have an energy gap.<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!