23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Next, we have to express Z ′ in terms <strong>of</strong> the new length scale r ′ := r + dr. This is only relevant in expressions not<br />

already linear in dr. This applies to, on the one hand,<br />

1<br />

r 2 = 1<br />

(r ′ − dr) 2 = 1 + 2 dr<br />

r ′<br />

(r ′ ) 2 , (7.62)<br />

and, on the other,<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

exp ⎝− 1 ∑<br />

2πK N i N j ln r⎠ = exp ⎝− 1 ∑<br />

2πK N i N j ln(r ′ − dr) ⎠<br />

2<br />

2<br />

i≠j<br />

i≠j<br />

⎛<br />

⎞ ⎛<br />

= exp ⎝− 1 ∑<br />

2πK N i N j ln r ′ ⎠ exp ⎝ 1 ∑<br />

2<br />

2<br />

i≠j<br />

i≠j<br />

⎛<br />

⎞<br />

= exp ⎝− 1 ∑<br />

(<br />

2πK N i N j ln r ′ ⎠<br />

2<br />

neglecting terms <strong>of</strong> order N 0 compared to N. The renormalized partition function is finally<br />

[ ( ) ]<br />

2 ( ) 2N [<br />

y<br />

Z ′ = exp 2π<br />

(r ′ ) 2 r ′ 1 y<br />

dr V<br />

(N!) 2 (r ′ ) 2 1 + (2 − πK) dr ] 2N<br />

r ′ N<br />

} {{ }<br />

∫<br />

×<br />

D ′ 1<br />

d 2 r 1 · · ·<br />

=: Z pair<br />

∑<br />

∫<br />

D ′ 2N<br />

i≠j<br />

⎡<br />

d 2 r 2N exp ⎣− 1 ∑<br />

2<br />

i≠j<br />

(<br />

−2πK + 8π 4 y 2 K 2 dr<br />

r ′ )<br />

⎞<br />

dr<br />

2πK N i N j<br />

⎠<br />

r ′<br />

1 − πK dr<br />

r ′ ) 2N<br />

, (7.63)<br />

⎤<br />

N i N j ln |r i − r j |<br />

⎦<br />

r ′ . (7.64)<br />

Here, Z pair is the partition function <strong>of</strong> the small pair we have integrated out. It is irrelevant for the renormalization<br />

<strong>of</strong> y and K. Apart from this factor, Z ′ is identical to Z if we set<br />

[<br />

y(r ′ ) = 1 + (2 − πK(r)) dr ]<br />

r ′ y(r) (7.65)<br />

Introducing the logarithmic length scale<br />

we obtain the Kosterlitz RG flow equations<br />

K(r ′ ) = K(r) − 4π 3 y 2 K 2 (r) dr<br />

r ′ . (7.66)<br />

l := ln r r 0<br />

⇒ dl = dr<br />

r , (7.67)<br />

The initial conditions are<br />

dy<br />

dl<br />

dK<br />

dl<br />

= (2 − πK) y, (7.68)<br />

= −4π 3 y 2 K 2 . (7.69)<br />

i.e., the parameters assume their “bare” values at r = r 0 (l = 0).<br />

y(l = 0) = y 0 = e −E core/k B T , (7.70)<br />

K(l = 0) = K 0 = − 1<br />

k B T 2γ α β , (7.71)<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!