23.05.2014 Views

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

Carsten Timm: Theory of superconductivity

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The constant is irrelevant for the following derivation and is omitted from now on. Since H BCS is bilinear in c, c †<br />

it describes a non-interacting effective system. But what is unusual is that H BCS contains terms <strong>of</strong> the form cc<br />

and c † c † , which do not conserve the electron number. We thus expect that the eigenstates <strong>of</strong> H BCS do not have a<br />

sharp electron number. We had already seen that the BCS ground state has this property. This is a bit strange<br />

since superpositions <strong>of</strong> states with different electron numbers are never observed. One can formulate the theory<br />

<strong>of</strong> <strong>superconductivity</strong> in terms <strong>of</strong> states with fixed electron number, but this formulation is cumbersome and we<br />

will not pursue it here.<br />

To diagonalize H BCS , we introduce new fermionic operators, which are linear combinations <strong>of</strong> electron creation<br />

and annihilation operators,<br />

(<br />

γk↑<br />

γ † −k,↓<br />

) ( u<br />

∗<br />

= k<br />

−v k<br />

v ∗ k<br />

u k<br />

) (<br />

ck↑<br />

c † −k,↓<br />

)<br />

. (10.8)<br />

This mapping is called Bogoliubov (or Bogoliubov-Valatin) transformation. Again, it is not clear yet that u k , v k<br />

are related to the previously introduced quantities denoted by the same symbols. For the γ to satisfy fermionic<br />

anticommutation relations, we require<br />

{ }<br />

γ k↑ , γ † k↑<br />

= γ k↑ γ † k↑ + γ† k↑ γ k↑<br />

= u ∗ ku k c k↑ c † k↑ − u∗ kv ∗ k c k↑ c −k,↓ − v k u k c † −k,↓ c† k↑ + v kv ∗ k c † −k,↓ c −k,↓<br />

+ u k u ∗ k c † k↑ c k↑ − u k v k c † k↑ c† −k,↓ − v∗ ku ∗ k c −k,↓ c k↑ + vkv ∗ k c −k,↓ c †<br />

{ −k,↓<br />

}<br />

}<br />

= |u k | 2 c k↑ , c † k↑<br />

−u ∗ kvk ∗ {c k↑ , c −k,↓ } −v k u k<br />

{c { }<br />

†<br />

−k,↓<br />

} {{ } } {{ }<br />

, c† k↑<br />

+ |v k | 2 c † −k,↓ , c −k,↓<br />

} {{ } } {{ }<br />

= 0<br />

= 1<br />

= 0<br />

= 1<br />

= |u k | 2 + |v k | 2 ! = 1. (10.9)<br />

Using this constraint, we find the inverse transformation,<br />

( ) ( ) (<br />

ck↑ uk v<br />

=<br />

k γk↑<br />

c † −k,↓<br />

−v ∗ k<br />

u ∗ k<br />

γ † −k,↓<br />

)<br />

. (10.10)<br />

Insertion into H BCS yields<br />

H BCS = ∑ ) (<br />

) (<br />

) )<br />

{ξ k<br />

(u ∗ kγ † k↑ + v∗ kγ −k,↓ u k γ k↑ + v k γ † −k,↓<br />

+ ξ k −vkγ ∗ k↑ + u ∗ kγ † −k,↓<br />

(−v k γ † k↑ + u kγ −k,↓<br />

k<br />

) (<br />

) ) (<br />

)}<br />

−∆ ∗ k<br />

(−v k γ † k↑ + u kγ −k,↓ u k γ k↑ + v k γ † −k,↓<br />

− ∆ k<br />

(u ∗ kγ † k↑ + v∗ kγ −k,↓ −vkγ ∗ k↑ + u ∗ kγ † −k,↓<br />

= ∑ {(<br />

)<br />

ξ k |u k | 2 − ξ k |v k | 2 + ∆ ∗ kv k u k + ∆ k u ∗ kvk<br />

∗ γ † k↑ γ k↑<br />

k<br />

(<br />

+<br />

(<br />

+<br />

+<br />

)<br />

−ξ k |v k | 2 + ξ k |u k | 2 + ∆ ∗ ku k v k + ∆ k vku ∗ ∗ k γ † −k,↓ γ −k,↓<br />

ξ k u ∗ kv k + ξ k u ∗ kv k + ∆ ∗ kvk 2 − ∆ k (u ∗ k) 2) γ † k↑ γ† −k,↓<br />

(ξ k vku ∗ k + ξ k vku ∗ k − ∆ ∗ ku 2 k + ∆ k (vk) ∗ 2) }<br />

γ −k,↓ γ k↑ + const. (10.11)<br />

The coefficients u k , v k should now be chosen such that the γγ and γ † γ † terms vanish. This requires<br />

Writing<br />

2ξ k u ∗ kv k + ∆ ∗ kv 2 k − ∆ k (u ∗ k) 2 = 0. (10.12)<br />

∆ k = |∆ k | e iϕ k<br />

, (10.13)<br />

u k = |u k | e iα k<br />

, (10.14)<br />

v k = |v k | e iβ k<br />

, (10.15)<br />

90

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!