30.06.2014 Views

John M. S. Bartlett.pdf - Bio-Nica.info

John M. S. Bartlett.pdf - Bio-Nica.info

John M. S. Bartlett.pdf - Bio-Nica.info

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

88 Hyndman and Mitsuhashi<br />

can be generated. This problem is compounded if the nonspecific binding site is within<br />

the amplicon itself. For this reason, primers should be checked for nonspecific alternate<br />

hybridization sites within the target sequence.<br />

4. Selecting Primers for Multiplex PCR<br />

Multiplex PCR, in which several primer sets amplify several amplicons in the same<br />

reaction, add a degree of complexity to designing optimal primers. The additional<br />

issues to consider are those of possible heterodimer formation between all of the<br />

candidate primers and possible alternate hybridization sites within any of the target<br />

sequences. Some of the available primer design software provides functions for these<br />

types of designs.<br />

5. Primer Design Software<br />

Several programs are available for PCR primer design. As mentioned above, we<br />

think HYBsimulator is the most powerful such program and does provide PCR primer<br />

selection based on all criteria mentioned in this chapter. Other popular programs<br />

are Oligo and Primer Premier , which provide a subset of these functions but are<br />

slightly easier to use.<br />

References<br />

1. Breslauer, K. J., Frank, R., Blocker, H., and Marky, L. (1986) Predicting DNA duplex<br />

stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.<br />

2. Freir, S. M., Kierzed, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and<br />

Turner, D. H. (1986) Improved free-energy parameters for predictions of RNA duplex.<br />

<strong>Bio</strong>chemistry 83, 9373–9377.<br />

3. Wetmer, J. (1991) DNA probes: Applications of the principles of nucleic acid hybridization.<br />

Crit. Rev. <strong>Bio</strong>chem. Mol. <strong>Bio</strong>l. 26, 227–259.<br />

4. Sugimoto, N., Nakano, S., Katoh, M., Matsumura, A., Nakamuta, H., Ohmichi, T., et al.<br />

(1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes.<br />

<strong>Bio</strong>chemistry 34, 11,211–11,216.<br />

5. SantaLucia, J., Allawi, H. T., and Seneviratne, P. A. (1996) Improved nearest-neighbor<br />

parameters for predicting DNA duplex stability. <strong>Bio</strong>chemistry 35, 3555–3562.<br />

6. SantaLucia, J., Kierzed, R., and Turner, D. H. (1990) Effects of GA mismatches on the<br />

structure and thermodynamics of RNA internal loops. <strong>Bio</strong>chemistry 29, 8813–8819.<br />

7. Sugimoto, N., Kierzed, R., Freier, S. M., and Turner, D. H. (1986) Energetics of internal GC<br />

mismatches in ribooligonulceotide helix. <strong>Bio</strong>chemistry 25, 5755–5759.<br />

8. Hyndman, D., Cooper, A., Pruzinsky, S., Coad, D., and Mitsuhashi, M. (1996) Software<br />

to determine optimal oligonucleotide sequences based on hybridization simulation data.<br />

<strong>Bio</strong>Techniques 20, 1090–1096.<br />

9. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local<br />

alignment search tool. J. Mol. <strong>Bio</strong>l. 215, 403– 410.<br />

10. Han, J., Hsu, C., Zhu, Z., Longshore, J., and Finley, H. (1994) Over-representation of<br />

the disease associated (CAG) and (CGG) repeats in the human genome. Nucleic Acids<br />

Res. 22, 1735–1740.<br />

11. Han, J., Zhu, Z., Hsu, C., and Finley, W. (1994) Selection of antisense oligonucleotides on<br />

the basis of genomic frequency of the target sequence. Antisense Res. Devel. 4, 53–65.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!