30.11.2014 Views

Proceedings of the European Summer School of Photovoltaics 4 – 7 ...

Proceedings of the European Summer School of Photovoltaics 4 – 7 ...

Proceedings of the European Summer School of Photovoltaics 4 – 7 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Optical and electrical parameters <strong>of</strong> thin oxide films based on TiO 2<br />

Thin film [% at.]<br />

T 550<br />

[%]<br />

λ cut<strong>of</strong>f<br />

[nm]<br />

ρ 300K<br />

[Ω cm]<br />

S<br />

[mV/K]<br />

TiO 2<br />

83 338 1·10 11 – –<br />

TiO 2<br />

:(5.5 Pd) 50 370 9.6·10 2 -11<br />

Ti-V oxides (3.0 V) 73 381 2.7·10 5 -200<br />

Ti-V oxides (23.0 V) 73 430 5,6·10 2 -20 n type<br />

TiO 2<br />

:(0.9 Eu, 5.8 Pd) 35 450 2.2·10 -1 -90<br />

TiO 2<br />

:(10.2 V, 6.9 Pd) 40 400 1.5 -410<br />

Ti-V oxides (19.0 V) 73 380 8·10 4 +685<br />

TiO 2<br />

:(15.8 Co, 6.9 Pd) 29 * 560 3.5·10 3 +77.5 p type<br />

TiO 2<br />

:(0.6 Tb, 9.0 Pd) 22 * 510 1·10 5 +120<br />

* average transmission determined at <strong>the</strong> wavelength λ=650 nm<br />

Fig. 1. AFM image <strong>of</strong> <strong>the</strong> nanocrystalline TiO 2<br />

thin films<br />

Fig. 2. Nanoindenter images <strong>of</strong> TiO 2<br />

thin films surface after hardness<br />

measurement<br />

From <strong>the</strong> point <strong>of</strong> view <strong>of</strong> oxide materials prepared for application<br />

in transparent electronics very important is a possibility to produce<br />

<strong>the</strong> transparent oxide semiconductors both with electron and hole<br />

type <strong>of</strong> electrical conduction. In Tabl. 1 <strong>the</strong> basic optical and electrical<br />

parameters <strong>of</strong> thin films based on TiO 2<br />

with different material<br />

compositions, determined from optical and electrical measurements<br />

were summarized. On <strong>the</strong> basis <strong>of</strong> electrical results it can be stated<br />

that <strong>the</strong> electrical conductivity <strong>of</strong> prepared films is primarily activated<br />

by <strong>the</strong> presence <strong>of</strong> Pd dopant [8]. Unfortunately, simultaneously with<br />

increasing concentration <strong>of</strong> Pd in <strong>the</strong> TiO 2<br />

matrix (from 5.5 to 9.0 at.<br />

%) <strong>the</strong>re was a significant decrease in transparency, up to 22% for<br />

TiO 2<br />

: (Tb,Pd) thin films (Tabl.). In addition, doping <strong>of</strong> TiO 2<br />

matrix with<br />

Pd element resulted in <strong>the</strong> shift <strong>of</strong> optical absorption edge towards<br />

longer wavelength. The authors in previous work [8] have found that<br />

improved electrical conductivity in TiO 2<br />

:Pd thin films is <strong>the</strong> results<br />

<strong>of</strong> <strong>the</strong> presence <strong>of</strong> nanocrystalline islands <strong>of</strong> mettalic Pd. Ano<strong>the</strong>r<br />

example are TiO 2<br />

:(Co,Pd) thin films, in which increase conductivity<br />

was due to <strong>the</strong> substitution <strong>of</strong> Ti 4+ ions located in <strong>the</strong> crystal lattice<br />

<strong>of</strong> TiO 2<br />

by dopant ions Co 3+ and Co 2+ . Thus, within <strong>the</strong> TiO 2<br />

energy<br />

band gap appeared <strong>the</strong> acceptor levels, which in consequence<br />

resulted decrease <strong>of</strong> resistivity [8]. Average transparency in <strong>the</strong> visible<br />

wavelength for TiO 2<br />

: (Co,Pd) thin films is 29% and it is much<br />

lower compared to <strong>the</strong> undoped TiO 2<br />

(Tabl.). As it can be seen, good<br />

electrical conductivity <strong>of</strong> TiO 2<br />

: Pd and TiO 2<br />

: (Co,Pd) thin films were<br />

obtained at <strong>the</strong> cost <strong>of</strong> <strong>the</strong>ir transparency level to light.<br />

Type <strong>of</strong> electrical conductivity was determined on <strong>the</strong> basis<br />

<strong>of</strong> Seebeck coeficient (S). A positive value <strong>of</strong> S indicates p-type<br />

conductivity in oxide. When <strong>the</strong> sign is negative <strong>the</strong> conductivity is<br />

dominated by n-type conductivity. As it can be observed from <strong>the</strong><br />

characteristics <strong>of</strong> S (1000/T) shown in Fig. 3, <strong>the</strong> doping <strong>of</strong> thin<br />

films based on TiO 2<br />

makes it possible to receive oxide semiconductors,<br />

both <strong>the</strong> n-type (Fig. 3a) and <strong>the</strong> p-type (Fig. 3b). N-type <strong>of</strong><br />

electrical conductivity was obtained for TiO 2<br />

:Pd, TiO 2<br />

:V (3 at. % <strong>of</strong><br />

V), Ti-V oxides (23 at. % <strong>of</strong> V), TiO 2<br />

:(Eu,Pd) oraz TiO 2<br />

:(V,Pd). While<br />

<strong>the</strong> opposite type <strong>of</strong> electrical conductivity revealed in case <strong>of</strong> Ti-V<br />

oxides (19 at. % <strong>of</strong> V), TiO 2<br />

:(Tb,Pd) and TiO 2<br />

:(Co,Pd) thin films.<br />

In Fig. 3 also interesting property <strong>of</strong> Ti-V oxides it has been<br />

observed, in which by different V concentration <strong>the</strong> type <strong>of</strong> electrical<br />

conductivity has been controlled. However, <strong>the</strong> analysis <strong>of</strong><br />

<strong>the</strong>rmoelectic properties in case <strong>of</strong> vanadium oxides are very<br />

complex, because <strong>of</strong> multivalence <strong>of</strong> vanadium oxides, ranging<br />

from 2 + to 5 + and <strong>the</strong>ir structural transformation in specified<br />

temperature. For example, n-type conduction is possible by replacing<br />

Ti 4+ ions in <strong>the</strong>ir site position in TiO 2<br />

with reduced to +4<br />

valence state vanadium ions (V4+). It is well known that titanium<br />

and vanadium dioxides may form V 1−x<br />

Ti x<br />

O 2<br />

solid solution in<br />

a broad range <strong>of</strong> x values [9]. Therefore, in such films <strong>the</strong>re are<br />

available extra electrons able to move in external electric field,<br />

giving n-type conduction. N-type conduction is also observed<br />

a)<br />

b)<br />

S [ µV/K]<br />

S [µV/K]<br />

550 500 450 400 350<br />

100<br />

N-type Ti:V oxides<br />

(23 at. % <strong>of</strong> V)<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

TiO 2<br />

:V<br />

(3 at. % <strong>of</strong> V)<br />

TiO 2<br />

:Pd<br />

TiO 2<br />

:(V, Pd)<br />

T [K]<br />

TiO 2<br />

:(Eu,Pd)<br />

2,0 2,5 3,0 3,5<br />

1000/T [K -1 ]<br />

550 500 450 400 350<br />

P-type<br />

Ti:V oxides<br />

(19 at. % <strong>of</strong> V)<br />

TiO 2<br />

:(Co,Pd)<br />

T [K]<br />

TiO 2<br />

:(Tb,Pd)<br />

2,0 2,5 3,0 3,5<br />

1000/T [K -1 ]<br />

Fig. 3. Characteristics <strong>of</strong> Seebeck coefficient <strong>of</strong> semiconducting<br />

thin-film based on TiO 2<br />

: a) with electron and b) hole type <strong>of</strong> electrical<br />

conduction<br />

Elektronika 6/2012 103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!