24.12.2014 Views

Set of supplementary notes.

Set of supplementary notes.

Set of supplementary notes.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.2. INTRINSIC CARRIER CONCENTRATION 101<br />

and valence band dispersions are thus (see Fig. 7.2)<br />

E c (k) = E c +<br />

h¯ 2k 2<br />

2m ∗ e<br />

; E v (k) = E v −<br />

h¯ 2k 2<br />

2m ∗ h<br />

(7.1)<br />

We shall need the densities <strong>of</strong> states for the conduction band<br />

g e (E) = 1 ( ) 2m<br />

∗ 3/2<br />

e<br />

(E − E<br />

2π 2 h¯ 2<br />

c ) 1/2 (7.2)<br />

and for the valence band<br />

g h (E) = 1 ( ) 2m<br />

∗ 3/2<br />

h<br />

(E<br />

2π 2 h¯ 2<br />

v − E) 1/2 (7.3)<br />

We can calculate the carrier density once the chemical potential µ is known. For electrons<br />

in the conduction band<br />

with f the Fermi function<br />

f(E) =<br />

n =<br />

∫ ∞<br />

E c<br />

dE g e (E)f(E) (7.4)<br />

1<br />

e (E−µ)/(k BT )<br />

+ 1 ≈ e−(E−µ)/(k BT )<br />

with the latter approximation valid when E − µ >> k B T (non-degenerate Fermi gas). This<br />

gives<br />

( ) m<br />

∗ 3/2<br />

n ≈ 2 e k B T<br />

e − Ec−µ<br />

k B T<br />

(7.6)<br />

2πh¯ 2<br />

(7.5)<br />

A similar calculation determines the concentration <strong>of</strong> holes<br />

( ) m<br />

∗ 3/2<br />

p ≈ 2 h k B T<br />

e − µ−Ev<br />

k B T<br />

(7.7)<br />

2πh¯ 2<br />

Note that the prefactors to the Boltzmann factors e − Ec−µ<br />

k B T<br />

absorbed into temperature-dependent concentrations<br />

and e − µ−Ev<br />

k B T<br />

can conveniently be<br />

( ) m<br />

∗ 3/2<br />

n c (T ) = 2 e k B T<br />

(7.8)<br />

2πh¯ 2<br />

( ) m<br />

∗ 3/2<br />

n v (T ) = 2 h k B T<br />

(7.9)<br />

2πh¯ 2<br />

These functions express the (temperature dependent) number <strong>of</strong> states within range k B T<br />

<strong>of</strong> the band edge for the conduction and valence band, respectively. The resulting expression<br />

for the number <strong>of</strong> electrons in the conduction band<br />

n = n c (T )e − Ec−µ<br />

k B T<br />

(7.10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!