13.07.2015 Views

The Genom of Homo sapiens.pdf

The Genom of Homo sapiens.pdf

The Genom of Homo sapiens.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CENTROMERE ANNOTATION 147CONCLUSIONSCurrent studies <strong>of</strong> the genomic organization <strong>of</strong> the centromericregions <strong>of</strong> human chromosomes reveal severalfeatures, despite the large gaps that are apparent in thecurrent genome sequence assemblies (e.g., Fig. 2). <strong>The</strong>most proximal contigs on several chromosome arms inthe genome have reached α-satellite DNA, includingthose on chromosomes 7 (Hillier et al. 2003; Scherer et al.2003), 16 (Horvath et al. 2000), 21 (Brun et al. 2003), 22(Dunham et al. 1999), and the Y chromosome (Skaletskyet al. 2003), in addition to our work on the X chromosomeand chromosome 17, as summarized here. Other fully sequencedcontigs (chromosome 10, Guy et al. 2003) terminatein other types <strong>of</strong> satellite DNA, short <strong>of</strong> connectingto α satellite at the centromere. However, only thecontigs on Xp and 17p span from euchromatin <strong>of</strong> thechromosome arm to higher-order α-satellite repeat arraysthat have been annotated functionally with centromereassays (Fig. 7). Others (like the chromosome 21q junctionillustrated in Fig. 7) terminate in monomeric α satellite,but are separated by a gap <strong>of</strong> undetermined size from thehigher-order sequences <strong>of</strong> the functional centromere.Thus, chromosome arm/centromere junctions remain importantgoals for future research, requiring a combination<strong>of</strong> directed efforts to extend existing contigs and suitablefunctional assays to provide validation and functional annotation.As we move toward an understanding <strong>of</strong> the organization,function, and evolution <strong>of</strong> the human genome, anyclaims <strong>of</strong> a “complete” sequence will need to include fullanalysis <strong>of</strong> the pericentromeric and other heterochromaticregions <strong>of</strong> our chromosomes. <strong>The</strong> data presented here andelsewhere (Schueler et al. 2001) suggest that, notwithstandingtheir repetitive content, the satellite-containingcentromeric regions <strong>of</strong> human chromosomes can beFigure 7. <strong>Genom</strong>e assembly <strong>of</strong> the centromeric regions <strong>of</strong> the Xchromosome, and chromosomes 17 and 21. Both the X and 17centromeres have contiguous sequence on the short-arm sides,connecting euchromatin to monomeric α satellite (green) tohigher-order repeat α satellite (red). Orange indicates othersatellite sequences. A chromosome 21q contig has reachedmonomeric α satellite but has not connected to higher-order αsatellite (gap indicated by question marks). For these three humanchromosomes, the centromere activity <strong>of</strong> their respectivehigher-order repeat α satellites has been functionally annotatedusing a human artificial chromosome assay (Harrington et al.1997; Ikeno et al. 1998; Schueler et al. 2001).mapped, sequenced, assembled, and annotated functionally.Complete assembly <strong>of</strong> centromere contigs should,therefore, be feasible and will provide an importantsource <strong>of</strong> genomic and functional data for studies <strong>of</strong> chromosomebiology, as well as genome evolution.Scientific arguments aside, there is also a strong historicaland philosophical imperative for including centromeresin the final stages <strong>of</strong> gap closure in the archival,truly complete sequence <strong>of</strong> the genome <strong>of</strong> <strong>Homo</strong> <strong>sapiens</strong>.After all, which part <strong>of</strong> the Rosetta Stone would onechoose to omit?ACKNOWLEDGMENTSWe thank Evan Eichler, Jeff Bailey, Devin Locke, andEric Green for helpful discussions and assistance. Workin the authors’ lab has been supported by research grantsfrom the National Institutes <strong>of</strong> Health and the March <strong>of</strong>Dimes Birth Defects Foundation.REFERENCESAlexandrov I., Kazakov A., Tumeneva I., Shepelev V., andYurov Y. 2001. Alpha-satellite DNA <strong>of</strong> primates: Old andnew families. Chromosoma 110: 253.Ando S., Yang H., Nozaki N., Okazaki T., and Yoda K. 2002.CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore inHeLa cells. Mol. Cell. Biol. 22: 2229.Bailey J.A., Yavor A.M., Viggiano L., Misceo D., Horvath J.E.,Archidiacono N., Schwartz S., Rocchi M., and Eichler E.E.2002. Human-specific duplication and mosaic transcripts:<strong>The</strong> recent paralogous structure <strong>of</strong> chromosome 22. Am. J.Hum. Genet. 70: 83.Blower M.D., Sullivan B.A., and Karpen G.H. 2002. Conservedorganization <strong>of</strong> centromeric chromatin in flies and humans.Dev. Cell 2: 319.Brun M., Ruault M., Ventura M., Roizes G., and DeSario A.2003. Juxtacentromeric region <strong>of</strong> chromosome 21: A boundarybetween centromeric heterochromatin and euchromaticchromosome arms. Gene 312: 41.Choo K.H. 2001. Domain organization at the centromere andneocentromere. Dev. Cell 1: 165.Clarke L. 1998. Centromeres: Proteins, protein complexes, andrepeated domains at centromeres <strong>of</strong> simple eukaryotes. Curr.Opin. Genet. Dev. 8: 212.Cleveland D.W., Mao Y., and Sullivan K.F. 2003. Centromeresand kinetochores: From epigenetics to mitotic checkpoint signaling.Cell 112: 407.Collins F.S., Green E.D., Guttmacher A.E., and Guyer M.S.2003. A vision for the future <strong>of</strong> genomics research. Nature422: 835.Copenhaver G.P., Nickel K., Kuromori T., Benito M.I., Kaul S.,Lin X., Bevan M., Murphy G., Harris B., Parnell L.D., Mc-Combie W.R., Martienssen R.A., Marra M., and Preuss D.1999. Genetic definition and sequence analysis <strong>of</strong> Arabidopsiscentromeres. Science 286: 2468.Dong F., Miller J.T., Jackson S.A., Wang G.L., Ronald P.C., andJiang J. 1998. Rice (Oryza sativa) centromeric regions consist<strong>of</strong> complex DNA. Proc. Natl. Acad. Sci. 95: 8135.Dunham I., Shimizu N., Roe B.A., Chissoe S., Hunt A.R.,Collins J.E., Bruskiewich R., Beare D.M., Clamp M., SminkL.J., Ainscough R., Almeida J.P., Babbage A., Bagguley C.,Bailey J., Barlow K., Bates K.N., Beasley O., Bird C.P.,Blakey S., Bridgeman A.M., Buck D., Burgess J., BurrillW.D., and O’Brien K.P., et al. 1999. <strong>The</strong> DNA sequence <strong>of</strong>human chromosome 22. Nature 402: 489.Durfy S.J. and Willard H.F. 1989. Patterns <strong>of</strong> intra- and interar-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!