06.12.2012 Views

th  - 1987 - 51st ENC Conference

th  - 1987 - 51st ENC Conference

th  - 1987 - 51st ENC Conference

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

WK3C<br />

LINEAR PREDICTION Z-TRANSFORM (LPZ) SPECTRAL ANALYSIS<br />

WITH ENHANCED RESOLUTION AND SENSITIVITY<br />

J. Tang* and J. R. Norris<br />

Chemistry Division, Argonne National Laboratory<br />

Argonne, IL 60439<br />

We have developed a new approach of spectral analysis (LPZ) l"s wi<strong>th</strong> improved<br />

resolution and sensitivity by combining <strong>th</strong>e linear prediction (l~P) <strong>th</strong>eory and <strong>th</strong>e<br />

z-transform, a combination of Fourier and Laplace transform. Instead of using <strong>th</strong>e<br />

power spectrum formula obtained by <strong>th</strong>e conventional MEM me<strong>th</strong>od, <strong>th</strong>e LPZ<br />

formula should be used to obtain a spectrum wi<strong>th</strong> phase information. The linear<br />

prediction coefficients can be calculated by <strong>th</strong>e Householder decomposition<br />

(QRD) 1-~, <strong>th</strong>e singular value decomposition (SVD), <strong>th</strong>e autoregression me<strong>th</strong>od (AR)<br />

using <strong>th</strong>e Levinson-Durbin algori<strong>th</strong>m or <strong>th</strong>e Burg's algori<strong>th</strong>m s. The LPZ me<strong>th</strong>od<br />

can overcome <strong>th</strong>e truncation artifacts and phase distortion problems. Applications<br />

of <strong>th</strong>e LPZ me<strong>th</strong>od to I-D and 2-D NMR signals will be demonstrated. In addition,<br />

<strong>th</strong>e comparisons among many variations of <strong>th</strong>e LPZ me<strong>th</strong>od (using SVD, QRD or<br />

AR) and <strong>th</strong>e o<strong>th</strong>er similar me<strong>th</strong>ods such as LPQRD 4, LPSVD s and <strong>th</strong>e ME..M 6"7<br />

me<strong>th</strong>ods will be illustrated.<br />

1. J. Tang and J.R. Norris, J. Chem. Phys. 84, 5210 (1986).<br />

2. J. Tang and J.R. Norris, J. Magn. Reson. 69, 180 (1986).<br />

3. J. Tang and J.R. Norris, Chem. Phys. Lett. 131, 252 (1986).<br />

4. J. Tang, C.P. Lin, M.K. Bowman, and J.R. Norris, J. Magn. Reson. 62, 167<br />

(1985).<br />

5. H. Barkhuijsen, J. de Beer, W.M.M.J. Bovee and D. van Ormondt, J. Magn.<br />

Reson. 61, 167 (1985).<br />

6. J.P. Burg, Thesis, Stanford University (1975).<br />

7. S. Sibisi, J. Skilling, R.G. Brereton, E.D. Laue and J. Staunton, Nature 311, a46<br />

(1984).<br />

This work was supported by <strong>th</strong>e Division of Chemical Sciences, Office of B~_~ic<br />

Energy Sciences of <strong>th</strong>e U.S. Department of Energy under contract W-31-109-Eng-38.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!