27.12.2012 Views

Acute Leukemias - Republican Scientific Medical Library

Acute Leukemias - Republican Scientific Medical Library

Acute Leukemias - Republican Scientific Medical Library

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a References 259<br />

ministered and the clinical context in which it is being<br />

evaluated. Prospective MRD monitoring may enhance<br />

our ability to interpret the efficacy of these new treatment<br />

strategies. Only by addressing these issues using<br />

standardized methods for MRD evaluation will the clinical<br />

promise of this important bio-marker be realized.<br />

References<br />

1. Miller CB, et al. (1991) Correlation of occult clonogenic leukemia<br />

drug sensitivity with relapse after autologous bone marrow transplantation.<br />

Blood 78(4):1125–1131<br />

2. Potter MN, et al. (1993) Molecular evidence of minimal residual<br />

disease after treatment for leukaemia and lymphoma: An updated<br />

meeting report and review. Leukemia 7(8):1302–1314<br />

3. Pui CH, Campana D (2000) New definition of remission in childhood<br />

acute lymphoblastic leukemia. Leukemia 14(5):783–785<br />

4. Campana D, Pui CH (1995) Detection of minimal residual disease<br />

in acute leukemia: Methodologic advances and clinical significance.<br />

Blood 85(6):1416–1434<br />

5. Szczepanski T, et al. (2001) Minimal residual disease in leukaemia<br />

patients. Lancet Oncol 2(7):409–417<br />

6. Vidriales MB, et al. (2003) Minimal residual disease monitoring by<br />

flow cytometry. Best Pract Res Clin Haematol 16(4):599–612<br />

7. Campana D, Coustan-Smith E (2002) Advances in the immunological<br />

monitoring of childhood acute lymphoblastic leukaemia.<br />

Best Pract Res Clin Haematol 15(1):1–19<br />

8. Coustan-Smith E, et al. (1998) Immunological detection of minimal<br />

residual disease in children with acute lymphoblastic leukaemia.<br />

Lancet 351(9102):550–554<br />

9. Inoue K, et al. (1994) WT1 as a new prognostic factor and a new<br />

marker for the detection of minimal residual disease in acute leukemia.<br />

Blood 84(9):3071–3079<br />

10. Inoue K, et al. (1997) Aberrant overexpression of the Wilms tumor<br />

gene (WT1) in human leukemia. Blood 89(4):1405–1412<br />

11. Miyagi T, et al. (1993) Expression of the candidate Wilm’s tumor<br />

gene, WT1, in human leukemia cells. Leukemia 7(7):970–977<br />

12. Bergmann L, et al. (1997) High levels of Wilms‘ tumor gene (wt1)<br />

mRNA in acute myeloid leukemias are associated with a worse<br />

long-term outcome. Blood 90(3):1217–1225<br />

13. Sugiyama H (1998) Wilms tumor gene (WT1) as a new marker for<br />

the detection of minimal residual disease in leukemia. Leuk Lymphoma<br />

30(1–2):55–61<br />

14. Miwa H, Beran M, Saunders GF (1992) Expression of the Wilms‘<br />

tumor gene (WT1) in human leukemias. Leukemia 6(5):405–409<br />

15. Menssen HD, et al. (1995) Presence of Wilms‘ tumor gene (wt1)<br />

transcripts and the WT1 nuclear protein in the majority of human<br />

acute leukemias. Leukemia 9(6):1060–1067<br />

16. Inoue K, et al. (1996) Long-term follow-up of minimal residual disease<br />

in leukemia patients by monitoring WT1 (Wilms tumor gene)<br />

expression levels. Blood 88(6):2267–2278<br />

17. Tamaki H, et al. (1996) Increased expression of the Wilms tumor<br />

gene (WT1) at relapse in acute leukemia. Blood 88(11):4396–4398<br />

18. Ogawa H, et al. (2003) The usefulness of monitoring WT1 gene<br />

transcripts for the prediction and management of relapse follow-<br />

ing allogeneic stem cell transplantation in acute type leukemia.<br />

Blood 101(5):1698–1704<br />

19. Garg M, et al. (2003) Prognostic significance of quantitative analysis<br />

of WT1 gene transcripts by competitive reverse transcription<br />

polymerase chain reaction in acute leukaemia. Br J Haematol<br />

123(1):49–59<br />

20. Cilloni D, et al. (2002) Quantitative assessment of WT1 expression<br />

by real time quantitative PCR may be a useful tool for monitoring<br />

minimal residual disease in acute leukemia patients. Leukemia<br />

16(10):2115–2121<br />

21. Kreuzer KA, et al. (2001) Fluorescent 5‘-exonuclease assay for the<br />

absolute quantification of Wilms‘ tumour gene (WT1) mRNA: Implications<br />

for monitoring human leukaemias. Br J Haematol<br />

114(2):313–318<br />

22. Pongers-Willemse MJ, et al. (1999) Primers and protocols for standardized<br />

detection of minimal residual disease in acute lymphoblastic<br />

leukemia using immunoglobulin and T cell receptor gene<br />

rearrangements and TAL1 deletions as PCR targets: Report of the<br />

BIOMED-1 CONCERTED ACTION: Investigation of minimal residual<br />

disease in acute leukemia. Leukemia 13(1):110–118<br />

23. van Dongen JJ, Wolvers-Tettero IL (1991) Analysis of immunoglobulin<br />

and T cell receptor genes. Part II: Possibilities and limitations<br />

in the diagnosis and management of lymphoproliferative diseases<br />

and related disorders. Clin Chim Acta 198(1–2):93–174<br />

24. van Dongen JJ, et al. (1999) Standardized RT-PCR analysis of fusion<br />

gene transcripts from chromosome aberrations in acute leukemia<br />

for detection of minimal residual disease. Report of the<br />

BIOMED-1 Concerted Action: Investigation of minimal residual<br />

disease in acute leukemia. Leukemia 13(12):1901–1928<br />

25. Hunger SP (1996) Chromosomal translocations involving the E2A<br />

gene in acute lymphoblastic leukemia: Clinical features and molecular<br />

pathogenesis. Blood 87(4):1211–1224<br />

26. Hunger SP, et al. (1998) E2A-PBX1 chimeric transcript status at end<br />

of consolidation is not predictive of treatment outcome in childhood<br />

acute lymphoblastic leukemias with a t(1;19)(q23;p13): A Pediatric<br />

Oncology Group study. Blood 91(3):1021–1028<br />

27. Privitera E, et al. (1992) Different molecular consequences of the<br />

1;19 chromosomal translocation in childhood B-cell precursor<br />

acute lymphoblastic leukemia. Blood 79(7):1781–1788<br />

28. Devaraj PE, et al. (1995) Expression of the E2A-PBX1fusion transcripts<br />

in t(1;19)(q23;p13) and der(19)t(1;19) at diagnosis and in<br />

remission of acute lymphoblastic leukemia with different B lineage<br />

immunophenotypes. Leukemia 9(5):821–825<br />

29. Lanza C, et al. (1996) Persistence of E2A/PBX1 transcripts in t(1;19)<br />

childhood acute lymphoblastic leukemia: Correlation with chemotherapy<br />

intensity and clinical outcome. Leuk Res 20(5):441–443<br />

30. Group Francais de Cytogenetique Hematologique (1996) Cytogenetic<br />

abnormalities in adult acute lymphoblastic leukemia: Correlations<br />

with hematologic findings outcome. A Collaborative Study<br />

of the Group Francais de Cytogenetique Hematologique. Blood<br />

87(8):3135–3142<br />

31. Gabert J, et al. (2001) Improved outcome of Adult patients with<br />

E2A PBX1/t(1;19) positive ALL after intensive therapy: Results of<br />

the LAL-94 multicentric protocol. Blood 98:840a<br />

32. Secker-Walker LM, et al. (1997) Cytogenetics adds independent<br />

prognostic information in adults with acute lymphoblastic leukaemia<br />

on MRC trial UKALL XA. MRC Adult Leukaemia Working Party.<br />

Br J Haematol 96(3):601–610

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!