27.12.2012 Views

Acute Leukemias - Republican Scientific Medical Library

Acute Leukemias - Republican Scientific Medical Library

Acute Leukemias - Republican Scientific Medical Library

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

260 Chapter 20 · Minimal Residual Disease Studies in <strong>Acute</strong> Lymphoblastic Leukemia<br />

33. Foa R, et al. (2003) E2A-PBX1fusion in adult acute lymphoblastic<br />

leukaemia: Biological and clinical features. Br J Haematol 120(3):<br />

484–487<br />

34. Romana SP, et al. (1995) High frequency of t(12;21) in childhood Blineage<br />

acute lymphoblastic leukemia. Blood 86(11):4263–4269<br />

35. Shurtleff SA, et al. (1995) TEL/AML1fusion resulting from a cryptic<br />

t(12;21) is the most common genetic lesion in pediatric ALL and<br />

defines a subgroup of patients with an excellent prognosis. Leukemia<br />

9(12):1985–1989<br />

36. Raynaud S, et al. (1996) The 12;21 translocation involving TEL and<br />

deletion of the other TEL allele: Two frequently associated alterations<br />

found in childhood acute lymphoblastic leukemia. Blood<br />

87(7):2891–2899<br />

37. Borkhardt A, et al. (1997) Incidence and clinical relevance of TEL/<br />

AML1 fusion genes in children with acute lymphoblastic leukemia<br />

enrolled in the German and Italian multicenter therapy trials. Associazione<br />

Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster<br />

Study Group. Blood 90(2):571–577<br />

38. de Haas V, et al. (2002) The TEL-AML1 real-time quantitative polymerase<br />

chain reaction (PCR) might replace the antigen receptorbased<br />

genomic PCR in clinical minimal residual disease studies in<br />

children with acute lymphoblastic leukaemia. Br J Haematol<br />

116(1):87–93<br />

39. Pine SR, et al. (2003) Real-time quantitative PCR: Standardized detection<br />

of minimal residual disease in pediatric acute lymphoblastic<br />

leukemia. Polymerase chain reaction. J Pediatr Hematol Oncol<br />

25(2):103–108<br />

40. Sykes PJ, et al. (1992) Quantitation of targets for PCR by use of<br />

limiting dilution. Biotechniques 13(3):444–449<br />

41. Cave H, et al. (1994) Prospective monitoring and quantitation of<br />

residual blasts in childhood acute lymphoblastic leukemia by<br />

polymerase chain reaction study of delta and gamma T-cell receptor<br />

genes. Blood 83(7):1892–1902<br />

42. Ouspenskaia MV, et al. (1995) Accurate quantitation of residual Bprecursor<br />

acute lymphoblastic leukemia by limiting dilution and a<br />

PCR-based detection system: A description of the method and the<br />

principles involved. Leukemia 9(2):321–328<br />

43. Pallisgaard N, et al. (1999) Rapid and sensitive minimal residual<br />

disease detection in acute leukemia by quantitative real-time<br />

RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes<br />

Chromosomes Cancer 26(4):355–365<br />

44. Chen X, et al. (2001) Quantification of minimal residual disease in<br />

T-lineage acute lymphoblastic leukemia with the TAL-1 deletion<br />

using a standardized real-time PCR assay. Leukemia 15(1):166–170<br />

45. Pongers-Willemse MJ, et al. (1998) Real-time quantitative PCR for<br />

the detection of minimal residual disease in acute lymphoblastic<br />

leukemia using junctional region specific TaqMan probes. Leukemia<br />

12(12):2006–2014<br />

46. Gabert J, et al. (2003) Standardization and quality control studies<br />

of “real-time” quantitative reverse transcriptase polymerase chain<br />

reaction of fusion gene transcripts for residual disease detection<br />

in leukemia – A Europe Against Cancer program. Leukemia 17(12):<br />

2318–2357<br />

47. Donovan JW, et al. (2000) Immunoglobulin heavy-chain consensus<br />

probes for real-time PCR quantification of residual disease<br />

in acute lymphoblastic leukemia. Blood 95(8):2651–2658<br />

48. Bruggemann M, et al. (2000) Improved assessment of minimal residual<br />

disease in B cell malignancies using fluorogenic consensus<br />

probes for real-time quantitative PCR. Leukemia 14(8):1419–1425<br />

49. van der Velden VH, et al. (2002) Immunoglobulin kappa deleting<br />

element rearrangements in precursor-B acute lymphoblastic leukemia<br />

are stable targets for detection of minimal residual disease<br />

by real-time quantitative PCR. Leukemia 16(5):928–936<br />

50. Beishuizen A, et al. (1994) Analysis of Ig and T-cell receptor genes<br />

in 40 childhood acute lymphoblastic leukemias at diagnosis and<br />

subsequent relapse: Implications for the detection of minimal residual<br />

disease by polymerase chain reaction analysis. Blood<br />

83(8):2238–2247<br />

51. Coustan-Smith E, et al. (2002) Use of peripheral blood instead of<br />

bone marrow to monitor residual disease in children with acute<br />

lymphoblastic leukemia. Blood 100(7):2399–2402<br />

52. Griesinger F, et al. (1999) Leukaemia-associated immunophenotypes<br />

(LAIP) are observed in 90% of adult and childhood acute<br />

lymphoblastic leukaemia: Detection in remission marrow predicts<br />

outcome. Br J Haematol 105(1):241–255<br />

53. Dworzak MN, et al. (2002) Prognostic significance and modalities<br />

of flow cytometric minimal residual disease detection in<br />

childhood acute lymphoblastic leukemia. Blood 99(6):1952–<br />

1958<br />

54. Farahat N, et al. (1998) Detection of minimal residual disease in Blineage<br />

acute lymphoblastic leukaemia by quantitative flow cytometry.<br />

Br J Haematol 101(1):158–164<br />

55. Coustan-Smith E, et al. (2000) Clinical importance of minimal residual<br />

disease in childhood acute lymphoblastic leukemia. Blood<br />

96(8):2691–2696<br />

56. Ciudad J, et al. (1998) Prognostic value of immunophenotypic detection<br />

of minimal residual disease in acute lymphoblastic leukemia.<br />

J Clin Oncol 16(12):3774–3781<br />

57. Borowitz MJ, et al. (2003) Minimal residual disease detection in<br />

childhood precursor-B-cell acute lymphoblastic leukemia: Relation<br />

to other risk factors. A Children’s Oncology Group study. Leukemia<br />

17(8):1566–1572<br />

58. Dworzak MN, et al. (2000) Detection of residual disease in pediatric<br />

B-cell precursor acute lymphoblastic leukemia by comparative<br />

phenotype mapping: Method and significance. Leuk Lymphoma<br />

38(3–4):295–308<br />

59. Cave H, et al. (1998) Clinical significance of minimal residual disease<br />

in childhood acute lymphoblastic leukemia. European Organization<br />

for Research and Treatment of Cancer7Childhood Leukemia<br />

Cooperative Group. N Engl J Med 339(9):591–598<br />

60. Roberts WM, et al. (1997) Measurement of residual leukemia during<br />

remission in childhood acute lymphoblastic leukemia. N Engl J<br />

Med 336(5):317–323<br />

61. van Dongen JJ, et al. (1998) Prognostic value of minimal residual<br />

disease in acute lymphoblastic leukaemia in childhood. Lancet<br />

352(9142):1731–1738<br />

62. Goulden NJ, et al. (1998) Minimal residual disease analysis for the<br />

prediction of relapse in children with standard-risk acute lymphoblastic<br />

leukaemia. Br J Haematol 100(1):235–244<br />

63. Brisco MJ, et al. (1994) Outcome prediction in childhood acute<br />

lymphoblastic leukaemia by molecular quantification of residual<br />

disease at the end of induction. Lancet 343(8891):196–200<br />

64. Foroni L, et al. (1997) Molecular detection of minimal residual<br />

disease in adult and childhood acute lymphoblastic leukaemia

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!