27.12.2012 Views

Acute Leukemias - Republican Scientific Medical Library

Acute Leukemias - Republican Scientific Medical Library

Acute Leukemias - Republican Scientific Medical Library

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a References 261<br />

reveals differences in treatment response. Leukemia 11(10): 1732–<br />

1741<br />

65. Nyvold C, et al. (2002) Precise quantification of minimal residual<br />

disease at day 29 allows identification of children with acute lymphoblastic<br />

leukemia and an excellent outcome. Blood 99(4):1253–<br />

1258<br />

66. Gameiro P, et al. (2002) Polymerase chain reaction (PCR)- and reverse<br />

transcription PCR-based minimal residual disease detection<br />

in long-term follow-up of childhood acute lymphoblastic leukaemia.<br />

Br J Haematol 119(3):685–696<br />

67. Marshall GM, et al. (2003) Importance of minimal residual disease<br />

testing during the second year of therapy for children with acute<br />

lymphoblastic leukemia. J Clin Oncol 21(4):704–709<br />

68. Brisco MJ, et al. (1997) Monitoring minimal residual disease in peripheral<br />

blood in B-lineage acute lymphoblastic leukaemia. Br J<br />

Haematol 99(2):314–319<br />

69. Yokota S, et al. (1991) Use of polymerase chain reactions to monitor<br />

minimal residual disease in acute lymphoblastic leukemia patients.<br />

Blood 77(2):331–339<br />

70. Martin H, et al. (1994) In patients with BCR-ABL-positive ALL in CR<br />

peripheral blood contains less residual disease than bone marrow:<br />

Implications for autologous BMT. Ann Hematol 68(2):85–87<br />

71. van der Velden VH, et al. (2002) Minimal residual disease levels in<br />

bone marrow and peripheral blood are comparable in children<br />

with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL.<br />

Leukemia 16(8):1432–1436<br />

72. Lal A, et al. (2001) Detection of minimal residual disease in peripheral<br />

blood prior to clinical relapse of childhood acute lymphoblastic<br />

leukaemia using PCR. Mol Cell Probes 15(2):99–103<br />

73. van Rhee F, et al. (1995) Quantification of residual disease in Philadelphia-positive<br />

acute lymphoblastic leukemia: Comparison of<br />

blood and bone marrow. Leukemia 9(2):329–335<br />

74. Mitterbauer G, et al. (1999) Quantification of minimal residual disease<br />

in patients with BCR-ABL-positive acute lymphoblastic leukaemia<br />

using quantitative competitive polymerase chain reaction.<br />

Br J Haematol 106(3):634–643<br />

75. Brisco MJ, et al. (2001) Molecular relapse can be detected in blood<br />

in a sensitive and timely fashion in B-lineage acute lymphoblastic<br />

leukemia. Leukemia 15(11):1801–1802<br />

76. Brisco J, et al. (1996) Relationship between minimal residual disease<br />

and outcome in adult acute lymphoblastic leukemia. Blood<br />

87(12):5251–5256<br />

77. Krampera M, et al. (2003) Outcome prediction by immunophenotypic<br />

minimal residual disease detection in adult T-cell acute lymphoblastic<br />

leukaemia. Br J Haematol 120(1):74–79<br />

78. Mortuza FY, et al. (2002) Minimal residual disease tests provide an<br />

independent predictor of clinical outcome in adult acute lymphoblastic<br />

leukemia. J Clin Oncol 20(4):1094–1104<br />

79. Nizet Y, et al. (1991) Follow-up of residual disease (MRD) in B lineage<br />

acute leukaemias using a simplified PCR strategy: Evolution of<br />

MRD rather than its detection is correlated with clinical outcome.<br />

Br J Haematol 79(2):205–210<br />

80. Sher D, et al. (2002) Clone-specific quantitative real-time PCR of<br />

IgH or TCR gene rearrangements in adult ALL following induction<br />

chemotherapy identifies patients with poor prognosis: Pilot study<br />

from the Cancer and Leukemia Group B (CALGB 20101). Blood<br />

100:153a<br />

81. Bruggemann M, et al. (2006) Clinical significance of minimal residual<br />

disease quantification in adult patients with standard-risk<br />

acute lymphoblastic leukemia. Blood 107:1116–1123<br />

82. Biondi A, et al. (1993) Detection of ALL-1/AF4fusion transcript by<br />

reverse transcription-polymerase chain reaction for diagnosis and<br />

monitoring of acute leukemias with the t(4;11) translocation.<br />

Blood 82(10):2943–2947<br />

83. Ludwig WD, et al. (1998) Immunophenotypic and genotypic features,<br />

clinical characteristics, and treatment outcome of adult pro-<br />

B acute lymphoblastic leukemia: Results of the German multicenter<br />

trials GMALL 03/87 and 04/89. Blood 92(6):1898–1909<br />

84. Cimino G, et al. (2000) A prospective study of residual-disease<br />

monitoring of the ALL1/AF4 transcript in patients with t(4;11)<br />

acute lymphoblastic leukemia. Blood 95(1):96–101<br />

85. Janssen JW, et al. (1994) Pre-pre-B acute lymphoblastic leukemia:<br />

High frequency of alternatively spliced ALL1-AF4 transcripts and<br />

absence of minimal residual disease during complete remission.<br />

Blood 84(11):3835–3842<br />

86. Cimino G, et al. (1996) Clinical relevance of residual disease monitoring<br />

by polymerase chain reaction in patients with ALL-1/AF-4<br />

positive-acute lymphoblastic leukaemia. Br J Haematol 92(3):659–<br />

664<br />

87. Preudhomme C, et al. (1997) Good correlation between RT-PCR<br />

analysis and relapse in Philadelphia (Ph1)-positive acute lymphoblastic<br />

leukemia (ALL). Leukemia 11(2):294–298<br />

88. Mitterbauer G, et al. (1995) PCR-monitoring of minimal residual<br />

leukaemia after conventional chemotherapy and bone marrow<br />

transplantation in BCR-ABL-positive acute lymphoblastic leukaemia.<br />

Br J Haematol 89(4):937–941<br />

89. Sierra J, et al. (1997) Marrow transplants from unrelated donors for<br />

treatment of Philadelphia chromosome-positive acute lymphoblastic<br />

leukemia. Blood 90(4):1410–1414<br />

90. Radich J, et al. (1997) Detection of bcr-abl transcripts in Philadelphia<br />

chromosome-positive acute lymphoblastic leukemia after<br />

marrow transplantation. Blood 89(7):2602–2609<br />

91. Miyamura K, et al. (1992) Detection of Philadelphia chromosomepositive<br />

acute lymphoblastic leukemia by polymerase chain reaction:<br />

Possible eradication of minimal residual disease by marrow<br />

transplantation. Blood 79(5):1366–1370<br />

92. Gehly GB, et al. (1991) Chimeric BCR-abl messenger RNA as a<br />

marker for minimal residual disease in patients transplanted for<br />

Philadelphia chromosome-positive acute lymphoblastic leukemia.<br />

Blood 78(2):458–465<br />

93. Radich J, Ladne P, Gooley T (1995) Polymerase chain reactionbased<br />

detection of minimal residual disease in acute lymphoblastic<br />

leukemia predicts relapse after allogeneic BMT. Biol Blood Marrow<br />

Transplant 1(1):24–31<br />

94. Dombret H, et al. (2002) Outcome of treatment in adults with Philadelphia<br />

chromosome-positive acute lymphoblastic leukemia –<br />

Results of the prospective multicenter LALA-94 trial. Blood<br />

100(7):2357–2366<br />

95. Towatari M, et al. (2004) Combination of intensive chemotherapy<br />

and imatinib can rapidly induce high-quality complete remission<br />

for a majority of patients with newly diagnosed BCR-ABL-positive<br />

acute lymphoblastic leukemia. Blood 104(12):3507–3512<br />

96. Thomas DA, et al. (2004) Treatment of Philadelphia chromosomepositive<br />

acute lymphocytic leukemia with hyper-CVAD and imatinib<br />

mesylate. Blood 103(12):4396–4407

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!