16.04.2013 Views

O Teorema de Stokes em Variedades - Fernando UFMS/CPAq

O Teorema de Stokes em Variedades - Fernando UFMS/CPAq

O Teorema de Stokes em Variedades - Fernando UFMS/CPAq

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2 <strong>Teor<strong>em</strong>a</strong> <strong>de</strong> <strong>Stokes</strong> 57<br />

i∗ω também irá se anular <strong>em</strong> ∂M. Portanto<br />

<br />

i ∗ ω = 0.<br />

Por outro lado, esten<strong>de</strong>ndo a <strong>de</strong>finição <strong>de</strong> aj <strong>em</strong> Hn , por<br />

⎧<br />

⎨ aj(x1, · · · , xn) = aj(x1, · · · , xn), se (x1, · · · , xn) ∈ U<br />

⎩<br />

∂M<br />

aj(x1, · · · , xn) = 0, se (x1, · · · , xn) ∈ H n \ U<br />

t<strong>em</strong>os f −1 (K) ⊂ U, e aj é diferenciável <strong>em</strong> H n .<br />

Consi<strong>de</strong>re então Q ⊂ H n um paralelepípedo, <strong>de</strong>finido por<br />

x 1 j ≤ xj ≤ x 0 j, j = 1, · · · , n<br />

e que contenha f −1 (K) <strong>em</strong> seu interior. Assim,<br />

<br />

dω =<br />

<br />

<br />

j−1 ∂aj<br />

(−1) dx1 · · · dxn =<br />

∂xj<br />

U<br />

U<br />

= <br />

(−1) j−1<br />

<br />

j<br />

Q<br />

j<br />

[aj(x1, · · · , xj−1, x 0 j, xj+1, · · · , xn)−<br />

−aj(x1, · · · , xj−1, x 1 j, xj+1, · · · , xn)]dx1 · · · dxj · · · dxn = 0,<br />

pois aj(x1, · · · , x 0 j, · · · , xn) = aj(x1, · · · , x 1 j, · · · , xn) = 0, para todo j = 1, , · · · , n. E<br />

portanto,<br />

(ii).<br />

<br />

∂M<br />

i ∗ <br />

ω =<br />

Se porém, f(U) ∩ ∂M = ∅, então a aplicação i po<strong>de</strong> ser escrita como<br />

⎧<br />

⎨ x1 = 0;<br />

i =<br />

⎩ xj = xj, se j = 1<br />

e usando a orientação induzida <strong>em</strong> ∂M, t<strong>em</strong>os<br />

M<br />

dω.<br />

i ∗ ω = a1(0, x2, · · · , xn)dx2 ∧ · · · ∧ dxn.<br />

Esten<strong>de</strong>ndo novamente aj a H n , e consi<strong>de</strong>rando o paralelepípedo Q ′ dado por<br />

x 1 1 ≤ x1 ≤ 0 ; x 1 j ≤ xj ≤ x 0 j, j = 1, · · · , n,<br />

<strong>de</strong> forma que a união <strong>de</strong> Q ′ com o hiperplano x1 = 0 contenha f −1 (K). Então,<br />

<br />

M<br />

dω =<br />

n<br />

(−1) j−1<br />

<br />

j=1<br />

Q ′<br />

∂aj<br />

dx1 · · · dxn =<br />

∂xj

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!