12.11.2023 Aufrufe

vgbe energy journal 10 (2022) - International Journal for Generation and Storage of Electricity and Heat

vgbe energy journal - International Journal for Generation and Storage of Electricity and Heat. Issue 10 (2022). Technical Journal of the vgbe energy e.V. - Energy is us! NOTICE: Please feel free to read this free copy of the vgbe energy journal. This is our temporary contribution to support experience exchange in the energy industry during Corona times. The printed edition, subscription as well as further services are available on our website, www.vgbe.energy +++++++++++++++++++++++++++++++++++++++++++++++++++++++

vgbe energy journal - International Journal for Generation and Storage of Electricity and Heat.
Issue 10 (2022).
Technical Journal of the vgbe energy e.V. - Energy is us!

NOTICE: Please feel free to read this free copy of the vgbe energy journal. This is our temporary contribution to support experience exchange in the energy industry during Corona times. The printed edition, subscription as well as further services are available on our website, www.vgbe.energy

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Analysis <strong>of</strong> VERA core physics benchmark problems<br />

has a modular structure <strong>and</strong> <strong>of</strong>fers multiple<br />

solvers <strong>for</strong> the neutron transport equation<br />

on 1D or 2D geometry with different boundary<br />

conditions. DONJON5 employs diffusion<br />

<strong>and</strong> SPn solution schemes [Hebert,<br />

1987] with ability to h<strong>and</strong>le detailed modeling<br />

such as thermal-hydraulic feedback<br />

through THM module. For lattice calculations,<br />

scheme <strong>of</strong> Canbakan <strong>and</strong> Hebert 2015<br />

is used. To produce improved multi-group<br />

cross sections <strong>for</strong> core calculation, B1 leakage<br />

including homogenization <strong>and</strong> condensation<br />

procedure have been considered.<br />

Two-step flux computation are carried out<br />

using Method <strong>of</strong> Characteristics (MOC) on<br />

detailed geometry instead <strong>of</strong> collision probability<br />

method [Hebert, 2020] <strong>for</strong> fast calculations.<br />

The self-shielding methods incorporated<br />

as sub-group method as well as the<br />

equivalence theory method [Lamarsh <strong>and</strong><br />

Baratta 2001].<br />

DRAGON <strong>and</strong> DONJON computer codes<br />

have been validated on different core configuration<br />

including PWRs. BEAVRS benchmark-initial<br />

core at Hot Zero Power (HZP)<br />

conditions [Horelik, Herman et al. 2018].<br />

For typical PWRs core configuration DRAG-<br />

ON5 <strong>and</strong> DONJON5 have been applied to<br />

find criticality, axial <strong>and</strong> radial power distributions<br />

[Sukarno 2021]. To per<strong>for</strong>m comparative<br />

studies <strong>for</strong> conversion from high<br />

enriched uranium (HEU) to low enriched<br />

uranium (LEU) in the reactor MNSR using<br />

DRAGON4 [Al Zain, El Hajjaji et al. 2018].<br />

For the analyses <strong>of</strong> IAEA benchmark titled<br />

in-core fuel management code package validation<br />

<strong>for</strong> WWERs [Rooijen, Khan et al.<br />

2017]. to per<strong>for</strong>m burnup dependent analysis<br />

<strong>of</strong> plate type research reactors [Liu, Wang<br />

et al. 2015]. For the assessment in predicting<br />

pin power reconstruction <strong>and</strong> <strong>for</strong>m factors<br />

as lattice code [Grgić, Ječmenica et al.<br />

2012]. Validation to per<strong>for</strong>m the fuel depletion<br />

on UO2 pin cell <strong>for</strong> prediction <strong>of</strong> infinite<br />

multiplication factor, isotopic inventories<br />

<strong>and</strong> activities [Al Zain, El Hajjaji et al. 2021].<br />

the effect <strong>of</strong> asymmetric assemblies <strong>and</strong> different<br />

reflectors [Fröhlicher, Salino et al.<br />

2021], Nuclear <strong>Heat</strong> Reactor NHR-5 [El<br />

Yaakoubi, Boukhal et al. 2021] are studied<br />

earlier to benchmark or validate the codes<br />

<strong>for</strong> various problem scenarios. To validate<br />

DRAGON5 <strong>and</strong> DONJON5 computer codes<br />

<strong>for</strong> application on PWRs from pin cell to core<br />

configurations including different burnable<br />

poison rods, Virtual Environment <strong>for</strong> Reactor<br />

Applications (VERA) core physics benchmark<br />

set <strong>of</strong> problems provides an excellent<br />

reference.<br />

The VERA Benchmark [Godfrey 2014] consists<br />

<strong>of</strong> a series <strong>of</strong> Core Physics Progression<br />

problems <strong>for</strong> Pressurized Water Reactor.<br />

The VERA benchmarks comprise <strong>of</strong> the twodimensional<br />

(2-D) pin cell problems at fixed<br />

temperature, various 2-D lattice assembly<br />

<strong>for</strong> different configurations as well as initial<br />

startup core i.e., Hot Zero Power (HZP)<br />

quarter core problem <strong>and</strong> three-dimensional<br />

(3-D) hot full power (HFP) core depletion<br />

problem. The benchmarks were proposed by<br />

the Consortium <strong>for</strong> Advanced Simulation <strong>of</strong><br />

Light water reactors (CASL) to assist nuclear<br />

s<strong>of</strong>tware <strong>and</strong> methods developers <strong>and</strong> analysts<br />

in assessing capabilities needed to<br />

model LWR cores. In addition to problem<br />

specification, reference solutions by continuous<br />

<strong>energy</strong> Monte Carlo code KENO-VI are<br />

also provided.<br />

2 Computer codes<br />

In this study <strong>for</strong> pin cell <strong>and</strong> fuel assembly<br />

lattice calculation the DRAGON5 <strong>and</strong> <strong>for</strong><br />

core calculation the DONJON5 code is used.<br />

The calculations have been per<strong>for</strong>med at<br />

Hot Zero Power operating conditions with<br />

multi-group cross-sections (XSs) libraries<br />

based on ENDF/B-VII.0.<br />

2.1 DRAGON5<br />

28 1 group Multi-group<br />

Library (DRAGLIB)<br />

Self-Shielded<br />

Library<br />

Next Bum up Step<br />

USS:<br />

FLU:<br />

Multi cell Flux<br />

Calculation<br />

Energy<br />

Condensation<br />

(26 groups)<br />

2 nd Level MOC<br />

Flux Calculation<br />

Condensation (2 groups)<br />

Fuel Burn up<br />

Database (COMPO)<br />

Micro Lib Updated <strong>for</strong><br />

1 st Level<br />

Fig. 1. Flow chart <strong>of</strong> calculation procedure.<br />

The lattice code DRAGON5 is a deterministic<br />

lattice computer code to solve the neutron<br />

transport equation using collision probability<br />

(CP) as well as Method <strong>of</strong> Characteristics<br />

(MOC) to generate few-group<br />

constants <strong>for</strong> later use in core calculations.<br />

The DRAGON5 computer code consists<br />

<strong>of</strong> a set <strong>of</strong> modules connected through<br />

the GAN generalized driver Branch calculations<br />

<strong>for</strong> moderator temperature, fuel<br />

temperature, moderator density, boron concentration,<br />

burnup <strong>and</strong> control variations<br />

to accommodate the various core conditions.<br />

DRAGON5 lattice computer code per<strong>for</strong>ms<br />

the multi-dimensional, multi-group resonance<br />

self-shielding calculations <strong>and</strong> neutron<br />

flux calculations considering the neutron<br />

leakage. It also per<strong>for</strong>ms transporttransport<br />

or transport-diffusion calculations<br />

<strong>and</strong> isotopic depletion calculations<br />

[G, Hébert et al. 2021].<br />

2.2 DONJON5<br />

DONJON5 is a modular deterministic code<br />

used <strong>for</strong> 3-dimensional core calculation developed<br />

by École Polytechnique de Montréal<br />

in Canada. The DONJON5 computer code<br />

consists <strong>of</strong> a set <strong>of</strong> modules connected<br />

through the GAN generalized driver [Roy<br />

<strong>and</strong> Hébert 2000]. It solves the neutron diffusion<br />

equations in few groups <strong>for</strong> core cal-<br />

FLU:<br />

Tracking<br />

Tracking<br />

Tracking<br />

Simple<br />

Geometry<br />

Level1<br />

Geometry<br />

Level2<br />

Geometry<br />

<strong>vgbe</strong> <strong>energy</strong> <strong>journal</strong> <strong>10</strong> · <strong>2022</strong> | 55

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!