12.11.2023 Aufrufe

vgbe energy journal 10 (2022) - International Journal for Generation and Storage of Electricity and Heat

vgbe energy journal - International Journal for Generation and Storage of Electricity and Heat. Issue 10 (2022). Technical Journal of the vgbe energy e.V. - Energy is us! NOTICE: Please feel free to read this free copy of the vgbe energy journal. This is our temporary contribution to support experience exchange in the energy industry during Corona times. The printed edition, subscription as well as further services are available on our website, www.vgbe.energy +++++++++++++++++++++++++++++++++++++++++++++++++++++++

vgbe energy journal - International Journal for Generation and Storage of Electricity and Heat.
Issue 10 (2022).
Technical Journal of the vgbe energy e.V. - Energy is us!

NOTICE: Please feel free to read this free copy of the vgbe energy journal. This is our temporary contribution to support experience exchange in the energy industry during Corona times. The printed edition, subscription as well as further services are available on our website, www.vgbe.energy

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

Analysis <strong>of</strong> VERA core physics benchmark problems<br />

Reference<br />

Calsulated<br />

% Error<br />

Fig. 2. Comparison <strong>of</strong> relative power distribution <strong>for</strong> 2A assembly<br />

Reference<br />

Calsulated<br />

% Error<br />

Fig. 3. Comparison <strong>of</strong> relative power distribution <strong>for</strong> 2F assembly.<br />

Reference<br />

Calsulated<br />

% Error<br />

Fig. 4. Comparison <strong>of</strong> relative power distribution <strong>for</strong> 2G assembly<br />

Reference<br />

Calsulated<br />

% Error<br />

Fig. 5. Comparison <strong>of</strong> relative power distribution <strong>for</strong> 2K assembly.<br />

semblies (FAs) with various configuration<br />

<strong>and</strong> temperatures are analyzed. The calculation<br />

conditions are given in Ta b l e 2 . Fuel<br />

assemblies 2A to 2D are analyzed with varying<br />

temperature conditions from 565 K to<br />

1,200 K. The rest <strong>of</strong> problems have the same<br />

temperature conditions (600 K). The simulated<br />

results <strong>of</strong> various VERA assemblies are<br />

given in Ta b l e 3 , which shows that the<br />

maximum relative error in multiplication<br />

factor is -330 pcm observed in 2G assembly.<br />

It is clear from the comparison that error in<br />

reactivity increases with increase in temperature<br />

<strong>for</strong> no Pyrex assemblies <strong>and</strong> increase<br />

in the number Pyrex rods. It is observed that<br />

the maximum error is in AIC controlled assemblies.<br />

For the Gadolinium (Gd) poisoned<br />

assemblies, the reactivity difference is about<br />

<strong>10</strong>0 pcm, which is quite reasonable agreement<br />

with reference value. The comparison<br />

shows quite favorable agreement with the<br />

reference which implies that DRAGON can<br />

be confidently applied to two-dimension<br />

Pressurized Water Reactors (PWRs) lattice<br />

problems. The pin power distribution <strong>for</strong> the<br />

varying temperature conditions (2A to 2D)<br />

are calculated, but only the pin power distribution<br />

<strong>for</strong> the no Pyrex assembly <strong>of</strong> 2A is<br />

shown in F i g u r e 2 . In the no Pyrex cases,<br />

the pin powers are close to the reference<br />

with the maximum error <strong>of</strong> 0.34 %. The calculated,<br />

reference power distribution <strong>and</strong><br />

percentage error <strong>for</strong> the assemblies with 12<br />

<strong>and</strong> 24 Pyrex were evaluated. F i g u r e 3<br />

show the relative error in assembly 2F (with<br />

24 Pyrex rods). The percent relative errors<br />

are in acceptable range with the maximum<br />

value <strong>of</strong> 1.22 %. For the AIC controlled case,<br />

the maximum underestimation is 2.75 % as<br />

shown in F i g u r e 4 . For 2 K zoned assembly<br />

with 24 Pyrex rods, the maximum overpower<br />

estimation is 1.29 % as shown in F i g -<br />

u r e 5 . In case <strong>of</strong> Gd based fuel, the 3.43 %<br />

underestimation in power occurs in the Gd<br />

pins in the assembly with 24 Gadolinia pins.<br />

The pin power distribution <strong>for</strong> the Gd based<br />

fuels show quite good agreement as shown<br />

in Figure 6.<br />

4.3 Problem #5-2D: 2D HZP BOC<br />

Quarter Core<br />

In this VERA benchmark, the HZP (Hot Zero<br />

Power) two-dimensional reactor core is<br />

analyzed to predict the criticality, power distribution<br />

<strong>and</strong> control rod worth at BOL (Beginning<br />

<strong>of</strong> Life) isothermal conditions. Ta -<br />

b l e 4 shows the comparison <strong>of</strong> reactivity<br />

<strong>for</strong> uncontrolled <strong>and</strong> controlled configuration.<br />

The reactivity is underestimated in the<br />

AIC controlled core by 663 pcm which is in<br />

the acceptable range <strong>for</strong> the core configuration.<br />

F i g u r e 7 <strong>and</strong> F i g u r e 8 show the<br />

<strong>vgbe</strong> <strong>energy</strong> <strong>journal</strong> <strong>10</strong> · <strong>2022</strong> | 57

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!