25.02.2013 Views

Letno poročilo 2005

Letno poročilo 2005

Letno poročilo 2005

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 objavljeni znanstveni prispevek na<br />

konferenci (vabljeno predavanje)<br />

5 objavljenih znanstvenih prispevkov na<br />

konferencah<br />

15 objavljenih povzetkov znanstvenih<br />

prispevkov na konferencah<br />

1 patentna prijava<br />

3 kon~na poro~ila o rezultatih raziskav<br />

3 elaborati, pred{tudije, {tudije<br />

2 diplomi<br />

GLAVNI DOSE@KI V LETU <strong>2005</strong><br />

- Sinteza in karakterizacija novega materiala z<br />

bistveno ve~jo teoreti~no kapaciteto od doslej<br />

znanih materialov za pozitivne baterijske<br />

elektrode<br />

V doslej znanih materialih za pozitivne elektrode<br />

v litijevih baterijah smo lahko za shranjevanje<br />

energije izkoristili najve~ 1 litij na<br />

molekulsko enoto materiala – ~eprav je ta<br />

enota na~eloma lahko vsebovala ve~ kot 1<br />

litij. S tem je bila specifi~na kapaciteta pozitivnih<br />

elektrod omejena na vrednosti med 150<br />

in 170 mAh/g. V laboratoriju pa nam je uspelo<br />

sintetizirati povsem nov anorganski<br />

material, Li 2 MnSiO 4 , v katerem lahko za<br />

shranjevanje naboja teoreti~no izrabimo oba<br />

litija, kar pomeni, da zna{a teoreti~na kapaciteta<br />

okoli 320 mAh/g. @al v praksi zaenkrat<br />

te kapacitete nismo uspeli izkoristiti – pri<br />

praznjenju/polnjenju dobimo podobne vrednosti<br />

kapacitete kot v prej omenjenih klasi~nih<br />

materialih. Vzrok so takoreko~ izolatorske<br />

elektri~ne lastnosti silikatov (elektronska<br />

prevodnost za Li 2 MnSiO 4 denimo zna{a okoli<br />

10 -12 S/cm), kar upo~asni kinetiko do te mere,<br />

da v realnem ~asu lahko izkoristimo le del<br />

razpolo`ljivega naboja. Glede na pretekle<br />

izku{nje s podobnimi izolatorskimi materiali<br />

pa obstaja realna mo`nost, da bomo z ustreznimi<br />

modifikacijami (zmanj{evanjem<br />

povpre~ne velikosti delcev, dodajanjem<br />

prevodnih faz, morda celo z dopiranjem)<br />

precej izbolj{ali povpre~no prevodnost elektrodnega<br />

kompozita ter posledi~no izkoristili<br />

znatno ve~ kot 1 litij na molekulsko enoto<br />

Laboratorij za elektrokemijo materialov<br />

Laboratory for Materials Electrochemistry<br />

1 Published Scientific Conference Contribution<br />

(Invited Lecture)<br />

5 Published Scientific Conference Contributions<br />

15 Published Scientific Conference Contribution<br />

Abstracts<br />

1 Patent Application<br />

3 Final Research Reports<br />

3 Treatises, Preliminary Studies, Studies<br />

2 Undergraduate Theses<br />

IMPORTANT ACHIEVEMENTS IN <strong>2005</strong><br />

- Synthesis and characterization of a new material<br />

with a considerably higher theoretical<br />

capacity than in present materials for Li battery<br />

positive electrodes<br />

In all existing materials for positive Li electrodes<br />

it is only possible to reversibly exchange<br />

up to 1 lithium per formula unit – even if the<br />

formula contains more than 1 lithium. This<br />

has limited the specific capacity of positive<br />

electrodes to values between 150 and 170<br />

mAh/g. Recently we have synthesized a completely<br />

new inorganic compound, Li 2 MnSiO 4 ,<br />

in which both lithium ions can in principle<br />

be exchanged so that the theoretical reversible<br />

capacity amounts as high as 320 mAh/<br />

g. Unfortunately, in practice we have not<br />

been able to exploit this huge capacity. In<br />

fact, upon material cycling we have obtained<br />

similar values of capacity as reported for other<br />

materials. The reason is the huge electrode<br />

polarization resulting from the insulating<br />

nature of silicates (for example, the electronic<br />

conductivity of Li 2 MnSiO 4 is in the range of<br />

10 -12 S/cm) which limits the exploitation of<br />

available charge. However, based on our experience<br />

with other insulating active particles,<br />

we hope that in future we will be able<br />

to improve the average conductivity of electrode<br />

composites, either by particle size minimization,<br />

addition of conductive phases or<br />

even by heterogeneous doping. It can be<br />

claimed that eventual practical exploitation<br />

of more than 1 Li per formula unit will open<br />

a new chapter in search for high-energy density<br />

storage materials.<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!