28.01.2014 Views

RESEARCH· ·1970·

RESEARCH· ·1970·

RESEARCH· ·1970·

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

B166<br />

TABLE 3.-Settling time for a 1 O-micron-diameter quartz sphere<br />

in sea water and in pure water<br />

Mean<br />

Depth (meters) Salinity 1 tempel1\- Settling velocity<br />

(in parts per ture (em/sec)<br />

thousand) (0°0) 1<br />

0-200 ____ _ 34. 6 10. 8 0. 00648131<br />

200-400 ____ _ 34. 6 9. 3 . 00620758<br />

400-600 ____ _ 34. 5 6. 5 . 00572845<br />

600~800 ____ _ 34.4 4. 3 . 00539250<br />

34. 3 3. 3 . 00524531<br />

34. 5 2. 9 . 00518623<br />

34. 7 2. 7 . 00514343<br />

34. 8 2. 6 . 00513419<br />

34. 9 2. 4 . 00509835<br />

34. 9 2. 1 . 00505166<br />

34. 8 1.6 . 00497223<br />

Total ___________________________________ _<br />

800-1, ooo ___ _<br />

1,000-1,500 __ 1, 500-2, ooo __ _<br />

2,000-2,500 __ _<br />

2, 500-3,000 __ _<br />

3, 000-3, 500 ___ 3, 500-4, ooo ___ _<br />

0-200 ____________ _<br />

200-400 ____________ _<br />

400-600 ____________ _<br />

600-800 ____________ _<br />

800-1,000 __________ _<br />

1, 000-1, 500 ___________ _<br />

1,500-2,000 __________ _<br />

2, 000-2, 500 ___________ _<br />

2, 500-3, ooo ___________ _<br />

~000-~500 ___________ _<br />

~500-4,000 ___________ _<br />

Sea water<br />

Pure water<br />

10. 8 0. 00696160<br />

9. 3 . 00673683<br />

6. 5 . 00620190<br />

4. 3 . 00579040<br />

3. 3 . 00559932<br />

2. 9 . 00553728<br />

2. 7 . 00550004<br />

2. 6 . 00547994<br />

2. 4 . 00544676<br />

2. 1 . 00539128<br />

1.6 . 00530232<br />

Total ___________________________________ _<br />

1 From Mathews (1939).<br />

Total time to<br />

settle (hours)<br />

SEDIMENTATION<br />

857. 27<br />

894. 85<br />

969. 93<br />

1, 030. 40<br />

1, 059. 32<br />

2,678. 09<br />

2,699. 78<br />

2, 705. 63<br />

2, 724. 80<br />

2, 748. 76<br />

2, 793. 30<br />

21, 162. 13<br />

(881. 76 days)<br />

798. 08<br />

824. 74<br />

895. 66<br />

959. 23<br />

992. 06<br />

2,508. 78<br />

2, 525. 25<br />

2, 534. 21<br />

2, 549. 72<br />

2,575. 99<br />

2,619.17<br />

19, 782. 89<br />

(824.29 days)<br />

They are considered resistances to settling velocity and<br />

are called inertial forces. Stokes' law does not take<br />

these forces into consideration, as it applies only to a<br />

perfect sphere. Failure to consider these factors in<br />

velocity calculations results in significant errors for<br />

nonspherical particles whose Reynolds number exceeds<br />

1.0. Blanchard (1967) experimentally determined that<br />

for a 25-micron-diameter quartz sphere the upper limit<br />

where Stokes' equation holds is at a Reynolds number<br />

of 0.02.<br />

The most important factor, other than fluid properties,<br />

affecting settling velocity is size. Shape has been<br />

considered secondary in importance, yet many of the<br />

discrepancies in settling velocity for a particular particle<br />

size are due to differences in shape (Schultz and<br />

others, 1954). Composition is important because it<br />

determines the specific gravity of the particle: Also,<br />

many biological particles dissolve rapidly, and their<br />

size, shape, and surface texture may change as they<br />

settle. Some may be totally dissolved before reaching<br />

the bottom of the sea.<br />

CONCLUSIONS<br />

Regardless of the factors not considered by Stokes'<br />

law, it is apparent that determination of settling velocities<br />

in sea water must take into account the basic differences<br />

between fresh water and sea water. Where<br />

errors of as much as 6 percent are significant in calculating<br />

settling velocity, the viscosity and specific<br />

gravity of sea water must be taken into account. A<br />

new table giving absolute values of the viscosity of<br />

sea water should be carefully compiled to aid· those<br />

actually involved in calculating the settling velocities<br />

of minerals in sea water. International sea water<br />

standards should be used for control. Such standards<br />

have been prepared by the Hydrographic Laboratory<br />

of the International Council for the Exploration of<br />

the Sea in Copenhagen, Denmark.<br />

REFERENCES<br />

Blanchard, M. B., 1967, Method for determining the density of<br />

microsize spherical particles : Geol. Soc. America Bull.,<br />

v. 78, p. 385-404.<br />

Hidaka, Koji, 1954, A contribution to the theory of upwelling<br />

and coastal currents: Am. Geophys. Union Trans., v. 35,<br />

no. 3, p. 431-444.<br />

Hodgman, C. D., ed., 1960, Handbook of chemistry and physics,<br />

42d ed. : Cleveland, Ohio, Chemical Rubber Publishing Co.,<br />

3,481 p. [repr. 1961].<br />

Krilmmel, 0., and Ruppin, E., 1906, 'tiber die innere Reibung des<br />

Seewassers: Wiss. Meeresunters. ( N,F.), 9 ( Abt. Kiel),<br />

p. 27-36.<br />

Mathews, D. J., 1939, Tables of the velocity of sound in pure<br />

water and sea water for use· in echo-sounding and soundranging,<br />

2d ed: Hydrographic Dept., The Admiralty, London,<br />

52 p.<br />

Schultz, E. F., Wilde, R. H., and Albertson, M. L., 1954, Influence<br />

of shape on the fall velocity of sedimentary particles :<br />

Omaha, Nebr., U.S. Army Corps Engineers, Missouri River·<br />

Div., MRD Sediment Ser., no. 5, 161 p.<br />

U.S. Navy Hydrographic Office, 1952, Tables for sea water<br />

density: Pub. 615, Washington, D.C., 265 p.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!