06.03.2014 Views

Download Volume II Accomplisments (28 Mb pdf). - IRIS

Download Volume II Accomplisments (28 Mb pdf). - IRIS

Download Volume II Accomplisments (28 Mb pdf). - IRIS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

40<br />

Crustal Structure beneath the High Lava Plains of Eastern Oregon<br />

and Surrounding Regions from Receiver Function Analysis<br />

Kevin C. Eagar and Matthew J. Fouch (Arizona State University), David E. James and Richard W. Carlson (Carnegie<br />

Institution of Washington)<br />

We analyze teleseismic P-to-S receiver functions to image crustal structure beneath the High Lava Plains (HLP) of eastern<br />

Oregon and surrounding regions. The coverage from 206 broadband seismic stations provides the first opportunity to resolve<br />

small scale variations in crustal composition, thickness, and heterogeneity. We utilize both Hκ stacking and a new Gaussianweighted<br />

common conversion point stacking technique. We find crust that is ≥ 40 km thick beneath the Cascades, Idaho Batholith,<br />

and Owyhee Plateau, and thinner (~31 km) crust beneath the HLP and northern Great Basin. Low Poisson’s ratios of ~0.250 characterize<br />

the granitic Idaho Batholith, while the Owyhee Plateau possesses values of ~0.270, typical of average continental crust.<br />

The Owyhee Plateau is a thick simple crustal block with distinct edges at depth. The western HLP exhibits high average values of<br />

0.295, expected from widespread basaltic volcanism. Combined with other geological and geophysical observations, the areas of<br />

high Poisson’s ratios (~0.320) and low velocity zones in the crust beneath north-central and southern Oregon are consistent with<br />

the presence of partial melt on either side of the HLP track, suggesting a central zone where crustal melts have drained to the surface,<br />

perhaps enabled by the Brothers Fault zone. Thicker crust and an anomalous N-S band of low Poisson’s ratios (~0.252) skirting<br />

the Steens Mountain escarpment is consistent with residuum from a mid-crustal magma source of the massive flood basalts,<br />

supporting the view of extensive mafic under- and intraplating of the crust from Cenozoic volcanism.<br />

References<br />

Eagar, K.C., M.J. Fouch, D.E. James, R.W. Carlson, 46˚N and the High C Lava Plains Seismic Working Group, Crustal structure beneath the High Lava<br />

Plains of Eastern Oregon and surrounding regions from receiver function analysis, submitted to J. Geophys. Res., June 2010.<br />

45˚N<br />

B<br />

Acknowledgements: This work would not have been possible without high quality seismic data provided through the hard work of the TA and the HLP<br />

44˚N<br />

Seismic Experiment teams (http://www.dtm.ciw.edu/research/HLP), A<br />

and the services A’ of the <strong>IRIS</strong> DMC. As always, the <strong>IRIS</strong> PASSCAL program<br />

provided world-class technical field support. 43˚N A special thanks goes to Jenda Johnson, whose contributions to the project have been innumerable<br />

and immeasurable, and Steven Golden for providing field and data support. We would also like to acknowledge the work and productive discussions<br />

on the crustal evolution with the other PIs of the HLP project, including Anita Grunder, Bill Hart, Tim Grove, Randy Keller, Steve Harder,<br />

42˚N<br />

B’<br />

and Bob Duncan. This research was supported 41˚N by National Science Foundation awards EAR-0548<strong>28</strong>8 (MJF EarthScope CAREER grant), EAR-<br />

C’<br />

0507248 (MJF Continental Dynamics High Lava Plains grant) and EAR-0506914 (DEJ/RWC Continental Dynamics High Lava Plains grant).<br />

44˚N<br />

a)<br />

45˚N 42˚N<br />

43˚N 40˚N<br />

Depth (km)<br />

Depth (km)<br />

46˚N<br />

46˚N<br />

44˚N<br />

41˚N<br />

A<br />

0<br />

3<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

B<br />

0<br />

3<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

122˚W 120˚W 118˚W 116˚W 114˚W<br />

CM<br />

HLP C<br />

SRP<br />

B<br />

A<br />

25 30 35 40 45<br />

Moho Depth (km)<br />

42˚N<br />

b)<br />

c)<br />

50<br />

122˚W 120˚W 118˚W 116˚W 114˚W<br />

45<br />

50<br />

35<br />

100<br />

CM<br />

LVZ?<br />

CM<br />

35<br />

30<br />

MP<br />

35<br />

30<br />

200<br />

CRB<br />

35<br />

41 35<br />

B’<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

HLP<br />

LVZ?<br />

0.704 line<br />

C’<br />

Distance (km)<br />

300<br />

30<br />

BM<br />

30<br />

BM<br />

35<br />

30<br />

400<br />

30<br />

0.704 line<br />

OP<br />

0.706 line<br />

0.706 line<br />

GB<br />

500<br />

30<br />

35<br />

OP<br />

40<br />

35<br />

IB<br />

35<br />

.704<br />

.706<br />

600<br />

A’<br />

IB<br />

B’<br />

40<br />

35<br />

GB<br />

2010 <strong>IRIS</strong> Core Programs Proposal | <strong>Volume</strong> <strong>II</strong> | Crustal Structure | <strong>II</strong>-125<br />

35.5<br />

A’<br />

700<br />

a)<br />

b)<br />

3<br />

46˚N 0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

44˚N 60<br />

70<br />

80<br />

Depth (km)<br />

c)<br />

42˚N<br />

3<br />

0<br />

10<br />

40˚N<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

Depth (km)<br />

d)<br />

Depth (km)<br />

0<br />

0<br />

C<br />

0<br />

122˚W 120˚W 118˚W 116˚W 114˚W<br />

A<br />

Distance (km)<br />

A’<br />

Figure 1: Map of Moho depth derived from H-k<br />

stacking<br />

CM<br />

analysis.<br />

BM<br />

Single station results<br />

IB<br />

(colored<br />

circles) are smoothed over a 10 x 10 km<br />

grid using splines under tension with a tension<br />

LVZ?<br />

factor of 0.3 using the Generic Mapping Tools<br />

30<br />

[Smith<br />

41<br />

and Wessel, 35 1990]. Red colors<br />

40<br />

denote<br />

shallower Moho; blue colors denote deeper<br />

Moho; gray regions represent areas of limited<br />

sampling in this study. Black solid lines denote<br />

5 km contours. 87Sr/86Sr isopleths of 0.704<br />

Band 0.706 (“.704” and “.706” lines) denoted B’ by<br />

black dashed lines. Geologic provinces include<br />

Cascade<br />

CM<br />

volcanic<br />

HLP<br />

arc (CM), Blue<br />

OPMountains GB<br />

(BM),<br />

High Lava Plains (HLP), Columbia River basin<br />

(CRB), Snake<br />

LVZ?<br />

River Plain (SRP), Idaho batholith<br />

(IB), Owyhee Plateau (OP), Modoc Plateau (MP),<br />

and Great Basin (GB).<br />

100<br />

41.5 37.5 35.5<br />

100<br />

200<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

200<br />

300<br />

300<br />

400<br />

-0.20<br />

-0.15-0.10-0.050.000.050.100.150.20<br />

Amplitude<br />

42<br />

400<br />

3<br />

0<br />

10<br />

CRB BM HLP<br />

20<br />

LVZ?<br />

30<br />

40<br />

80<br />

50<br />

60<br />

37 34.5<br />

70<br />

37<br />

33<br />

.704<br />

500<br />

.704<br />

.706<br />

600<br />

43.5 35.5<br />

500<br />

.706<br />

GB<br />

31.5<br />

700<br />

C’<br />

600<br />

46˚N<br />

44˚N<br />

42˚N<br />

40˚N<br />

CM<br />

.250<br />

.275<br />

122˚W 120˚W 118˚W 116˚W 114˚W<br />

.300<br />

.325<br />

.300<br />

.300 .300<br />

HLP<br />

.325<br />

.300<br />

MP<br />

.275<br />

CRB<br />

.275<br />

.275<br />

0.704 line<br />

0.25<br />

BM<br />

.250<br />

.275<br />

0.205 0.240 0.275 0.310 0.345<br />

Poisson’s Ratio<br />

.275<br />

0.704 line<br />

OP<br />

0.706 line<br />

.250<br />

.225<br />

0.<br />

.250<br />

.300<br />

0.706 line<br />

.300<br />

GB<br />

.275<br />

IB<br />

.250<br />

.225<br />

.250<br />

.275<br />

SRP<br />

46˚N<br />

44˚N<br />

42˚N<br />

40˚N<br />

Figure 3: Map of Poisson’s ratios derived from H-k<br />

stacking analysis. Smoothing parameters and geological/geochemical<br />

features are the same as in<br />

figure 1. Black solid lines denote 0.025 contours.<br />

Figure 2: Cross-sections of Moho depths and crustal features.<br />

Geologic and geochemical provinces labeled as in the maps.<br />

Colored background is amplitudes from GCCP stacking. Solid line<br />

with depth labels is Moho valued picked from maximum amplitudes<br />

in GCCP stacks. Dotted black lines labeled LVZ are areas of<br />

strong negative amplitudes in the crust. White stars represent Hk<br />

Moho depths from the nearest stations along each profile. Profile<br />

A-A’ is oriented east-west; profile C-C’ is oriented north-south.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!