07.12.2012 Views

The Origin and Evolution of Mammals - Moodle

The Origin and Evolution of Mammals - Moodle

The Origin and Evolution of Mammals - Moodle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

276 THE ORIGIN AND EVOLUTION OF MAMMALS<br />

82<br />

81<br />

78<br />

77<br />

Cetartiodactyla<br />

76<br />

Eulipotyphla<br />

Chiroptera<br />

Rodentia<br />

55<br />

56<br />

57<br />

58<br />

50<br />

51<br />

Primates<br />

49<br />

Xenarthra<br />

65<br />

66<br />

Figure 7.25 Divergence <strong>of</strong> major supraorders <strong>of</strong> placentals. Molecular based dates <strong>of</strong> Springer et al. (2003).<br />

which is indeed the palaeontologist’s commonest<br />

response. Benton (1999), in a typical example <strong>of</strong><br />

such an argument, suggested that the high rate <strong>of</strong><br />

speciation <strong>and</strong> morphological evolution during a<br />

phase <strong>of</strong> rapid lineage splitting, may be associated<br />

with an increased rate <strong>of</strong> selection at the molecular<br />

level. This would lead to greater molecular differences<br />

between groups, <strong>and</strong> therefore earlier estimated<br />

dates <strong>of</strong> divergence if it was falsely assumed<br />

that molecular evolution had been clock-like.<br />

<strong>The</strong> most recent molecular studies use methods<br />

that not do not depend on a single, simple molecular<br />

clock model, for instance the Bayesian approach,<br />

used by Springer et al. (2003). <strong>The</strong>ir study also compared<br />

the divergence dates generated by different<br />

categories <strong>of</strong> the molecular data, namely only<br />

nuclear genes, only mitochondrial genes, only<br />

exons, or only third codon positions, <strong>and</strong> found relatively<br />

little difference amongst them. It would be<br />

68<br />

67<br />

69 Perissodactyla<br />

62<br />

74<br />

63<br />

60<br />

Carnivora<br />

59<br />

Pholidota<br />

80<br />

75<br />

73<br />

71<br />

72<br />

Lagomorpha<br />

Sc<strong>and</strong>entia<br />

Dermoptera<br />

52<br />

79<br />

Afrosoricida<br />

45<br />

46<br />

47<br />

Tubulidentata<br />

48<br />

Sirenia<br />

42 Hyracoidea<br />

43 Proboscidea<br />

110 100 90 80 70 60 50 40 30 20 10 0<br />

Cretaceous<br />

K-T boundary<br />

61<br />

53<br />

Cenozoic<br />

64<br />

Macroscelidea<br />

70<br />

44<br />

54<br />

whale<br />

dolphin<br />

hippo<br />

ruminant<br />

pig<br />

llama<br />

rhino<br />

tapir<br />

horse<br />

cat<br />

caniform<br />

pangolin<br />

flying fox<br />

rousette fruit bat*<br />

false vampire bat*<br />

phyllostomid bat*<br />

free tailed bat*<br />

hedgehog*<br />

shrew*<br />

mole*<br />

mouse*<br />

rat*<br />

hystricid<br />

caviomorph<br />

scurid*<br />

rabbit<br />

pika<br />

flying lemur*<br />

tree shrew*<br />

strepsirrhine<br />

human<br />

sloth<br />

L<br />

aurasiatheria<br />

E<br />

u<br />

a<br />

r<br />

c<br />

h<br />

o<br />

n<br />

t<br />

o<br />

g<br />

l<br />

i<br />

r<br />

e<br />

s<br />

B<br />

O<br />

RE<br />

O<br />

EUT<br />

H<br />

E<br />

R<br />

I<br />

A<br />

anteater<br />

armadillo<br />

tenrec*<br />

golden mole*<br />

s.e.elephant shrew*<br />

Xenarthra<br />

i.e.elephant shrew*<br />

aardvark<br />

sirenian<br />

hyrax<br />

elephant<br />

Afrotheria<br />

very surprising for all these categories to have<br />

exactly the same pattern <strong>of</strong> variability <strong>of</strong> evolutionary<br />

rate under the influence <strong>of</strong> varying intensities<br />

<strong>of</strong> molecular-level selection. <strong>The</strong> authors also calculated<br />

that forcing the molecular differences<br />

between the groups onto a tree constructed on the<br />

fossil-based divergence dates implies extremely<br />

variable rates <strong>of</strong> molecular evolution amongst the<br />

orders <strong>and</strong> subordinal groups. <strong>The</strong> highest rates,<br />

between certain diverging orders, would have to be<br />

up to almost 700 times the lowest rates found<br />

within certain subordinal groups. This level <strong>of</strong> rate<br />

variation seems far-fetched, even for the most committed<br />

<strong>of</strong> molecular selectionist views.<br />

<strong>The</strong> Garden <strong>of</strong> Eden hypothesis. An explanation for the<br />

discrepancy between the fossil <strong>and</strong> molecular dates,<br />

which allows that both the fossil <strong>and</strong> the molecular<br />

data are correct, was discussed by Foote et al. (1999).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!