03.04.2013 Views

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fig. 2: The Coronas fault scarp. The polish<strong>in</strong>g of <strong>the</strong> fault<br />

plane is owed to <strong>the</strong> last glacial advance, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> scarp<br />

formed prior to <strong>the</strong> last maximum glacial advance <strong>in</strong> <strong>the</strong> area<br />

(~23‐25 ka ago).<br />

Fig. 3: Above: Geomorphologic sketch show<strong>in</strong>g <strong>the</strong> location of<br />

<strong>the</strong> Coronas fault <strong>and</strong> <strong>the</strong> Barrancs fault system <strong>and</strong> o<strong>the</strong>r<br />

scarps with respect to topography.<br />

1.Ma<strong>in</strong> faults 2. M<strong>in</strong>or scarps. 3. Inferred limits of<br />

gravitational deformation. 4. 100 m countour l<strong>in</strong>es. 5<br />

watersheds. 6 rivers. Below: Topographic cross section <strong>and</strong><br />

<strong>in</strong>terpretation of <strong>the</strong> Aneto gravitational collapse.<br />

The slow gravitational component of <strong>the</strong> movement is<br />

attributed to <strong>the</strong> fault on <strong>the</strong> basis of its position <strong>in</strong> <strong>the</strong><br />

Aneto massif. The great altitude difference between <strong>the</strong><br />

ridge (up to 3404 m) <strong>and</strong> <strong>the</strong> Esera river (~1900 m),<br />

shown <strong>in</strong> Fig. 3, supports <strong>the</strong> hypo<strong>the</strong>sis of <strong>the</strong><br />

northwards gravitational collapse of <strong>the</strong> ridge. The<br />

observed offset can be l<strong>in</strong>ked to a deep seated slope<br />

gravitational deformation (DGSD) of huge dimensions.<br />

Physical models performed <strong>in</strong> analogous conditions<br />

(Bachmann et al. 2006) support <strong>the</strong> feasibility of <strong>the</strong><br />

gravitational failure, which would be l<strong>in</strong>ked to <strong>the</strong><br />

development of a new formed slid<strong>in</strong>g basal plane,<br />

branched <strong>in</strong> depth to <strong>the</strong> Coronas fault. The northwards<br />

1 st INQUA‐IGCP‐567 International Workshop on Earthquake Archaeology <strong>and</strong> <strong>Palaeoseismology</strong>)<br />

100<br />

movement would be generat<strong>in</strong>g a great rear scarp (<strong>the</strong><br />

Coronas scarp, Fig. 2) as well as smaller antislope scarps <strong>in</strong><br />

<strong>the</strong> opposite valley (cross section <strong>in</strong> Fig. 3). This<br />

component of <strong>the</strong> movement allows expla<strong>in</strong><strong>in</strong>g <strong>the</strong> great<br />

fault offset with respect to its length, which yields a D/L<br />

value of 0.013, one order of magnitude greater than <strong>the</strong><br />

expected for pure neotectonic faults. The fact of <strong>the</strong> fault<br />

be<strong>in</strong>g also neotectonic <strong>and</strong> seismogenic re<strong>in</strong>forces <strong>the</strong><br />

feasibility of <strong>the</strong> ridge collapse, s<strong>in</strong>ce <strong>the</strong> seismic shack<strong>in</strong>g,<br />

amplified <strong>in</strong> <strong>the</strong> ridges, will facilitate <strong>the</strong> movement along<br />

discont<strong>in</strong>uities (see Ortuño, 2008 for fur<strong>the</strong>r discussion).<br />

The Barrancs fault system<br />

Faults <strong>in</strong> <strong>the</strong> Barrancs fault system bound <strong>the</strong> Barrancs<br />

lake longitud<strong>in</strong>ally <strong>and</strong> are oriented NNW‐SSE, oblique to<br />

<strong>the</strong> major neotectonic features <strong>in</strong> <strong>the</strong> area (Fig. 1). The<br />

two ma<strong>in</strong> faults are identified by <strong>the</strong> offset of a polished<br />

glacial whaleback hill located at <strong>the</strong> bottom of <strong>the</strong><br />

Barrancs valley. The scarps develop on old shear zones,<br />

have lengths between 0.2 <strong>and</strong> 1.2 km <strong>and</strong> a maximum<br />

height of 20 m. Displacement vector can be estimated<br />

restor<strong>in</strong>g <strong>the</strong> shape of <strong>the</strong> offseted whaleback surface,<br />

that dates form <strong>the</strong> last glacial maximum (~ 23‐25 ka,<br />

Pallas et al. 2006). Episodic displacement on one of <strong>the</strong><br />

faults is evidenced by 3 different wea<strong>the</strong>r<strong>in</strong>g strips on <strong>the</strong><br />

fault plane (Fig. 4). Fault planes do not show glacial<br />

polishment. However, preservation of glacial striae on <strong>the</strong><br />

fault scarps at several locations <strong>in</strong>dicates that <strong>the</strong> fault<br />

surface is affected by glacial erosion, probably dur<strong>in</strong>g <strong>the</strong><br />

Younger Dryas episode (~ 12‐15 ka; Pallas et al., 2006).<br />

Although <strong>the</strong>se smaller faults could be secondary tectonic<br />

features produced by seismic shak<strong>in</strong>g along <strong>the</strong> Coronas<br />

fault or <strong>the</strong> Port de Vielha fault, <strong>the</strong>ir short lengths do not<br />

allow attribut<strong>in</strong>g <strong>the</strong>m a seismogenic potential. The D/L<br />

ratio of <strong>the</strong> scarps <strong>and</strong> <strong>the</strong> high slip rates <strong>in</strong>ferred from<br />

<strong>the</strong>ir postglacial age (>0,8 mm/a) do not support <strong>the</strong> pure<br />

neotectonic orig<strong>in</strong> for <strong>the</strong>se faults.<br />

These faults have been <strong>in</strong>terpreted as secondary faults <strong>in</strong><br />

association with <strong>the</strong> northwards collapse of <strong>the</strong> Aneto<br />

Massif (Fig.3). Evidences account<strong>in</strong>g for this orig<strong>in</strong> are <strong>the</strong><br />

measured displacement vector <strong>and</strong> <strong>the</strong> relative position<br />

with respect to <strong>the</strong> Coronas fault. Accord<strong>in</strong>g to <strong>the</strong> model<br />

for <strong>the</strong> collapse of <strong>the</strong> massif (Fig. 3), <strong>the</strong> slip along <strong>the</strong><br />

Barrancs faults could be <strong>the</strong> result of differential<br />

movement of <strong>the</strong> Barrancs block <strong>and</strong> <strong>the</strong> Aneto block. Fig.<br />

5 shows <strong>the</strong> proposed chronology for <strong>the</strong> formation <strong>and</strong><br />

modification of <strong>the</strong> scarps.<br />

Fig. 4: Fault scarp <strong>in</strong> <strong>the</strong> Barranc fault system. Slip vector is<br />

marked by an arrow at <strong>the</strong> centre <strong>and</strong> dip of <strong>the</strong> fault. It<br />

<strong>in</strong>dicates ma<strong>in</strong> dip slip with m<strong>in</strong>or left lateral displacement.<br />

Notice <strong>the</strong> 3 b<strong>and</strong>s of different alteration degree that can be<br />

dist<strong>in</strong>guished <strong>in</strong> <strong>the</strong> fault face.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!